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PREFACE

An adequate physical and mathematical description of material be-
havior is basic to all engineering applications. Fortunately, many prob-
lems may be treated entirely within the framework of elastic material
response. While even these problems may become quite complex be-
cause of geometrical and loading conditions, the linearity, reversibility,
and rate independence generally applicable to elastic material descrip-
tion certainly eases the task of the analyst. Today, however, we are in-
creasingly confronted with practical problems which involve material
response which is inelastic, hysteretic and rate dependent combined
with loading which is transient in nature. These problems include, for
instance, structural response to moving or impulsive loads, all the areas
of ballistics (internal, external and terminal), contact stresses under
high speed bearings, high speed machining, rolling and other metal
working processes, explosive and impact forming, shock attenuation
structures, seismic wave propagation, and many others of equal im-
portance. As these problems were encountered, it became increasingly
evident that we did not have at hand the physical or mathematical
description of the behavior of materials necessary to produce realistic
solutions. Thus, during the last ten years particularly, there has been
considerable effort expended toward the generation of both experi-
mental data on the dynamic mechanical response of materials as well
as the formulation of realistic constitutive theories. It was the purpose
of the Symposium at which the articles in this book were presented to
discuss and review recent developments in this field.

Dynamic loading in the present context was taken to include de-
formation rates above those achieved on the standard laboratory
testing machine (commonly designated as static or quasi-static). While
slow tests may encounter time-dependent effects, such as creep and
stress-relaxation, and therefore are in a sense dynamic, these topics
were not explicitly included in the Symposium. Rather, the emphasis
was on rates of loading encountered in impact problems where in-
ertia forces as well as viscous type forces may play a dominant role. The
reader will find papers related to the interpretation of results from
high-speed testing machines, impact or impulsive loading of bars,
plates, cylinders and spheres, and the propagation of cracks; all with
the purpose of defining the intrinsic dynamic mechanical properties
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of the materials under study. There are, in addition, papers dealing
with the fundamentals of the development of a basic constitutive
theory for solids. This theory is developed in different papers from
the standpoints of classical continuum mechanics, from the fundamen-
tal laws of thermodynamics, and from the microscopic point of view
through consideration of dynamic dislocation mechanisms for crystal-
line solids. It was the intention of the organizers of the Symposium to
bring together those applying these apparently divergent approaches
to the same basic end objective, since it was felt that future develop-
ments in this area will depend upon a synthesis of the results from such
areas as mechanics, thermodynamics, the materials sciences, and cer-
tain aspects of solid state physics.

While the majority of the papers are concerned with the plastic
flow of metals, other materials treated include those which exhibit
viscoelastic behavior, rocks, and a specific foam composition. This
distribution is not in proportion to importance, but rather reflects the
relative level of effort in the technical community on dynamic proper-
ties of the several classes of materials. The future will undoubtedly see
an increased interest in the non-metallics as their applications expand.

The Symposium was held on September 6-8, 1967, in San Antonio,
Texas, and was attended by approximately 150 persons. There were
five technical sessions with invited technical papers being presented
by distinguished researchers from this country and abroad. At the
conclusion of the technical presentations, the five session chairmen
were given the unenviable task of summarizing in a few (10) minutes
the papers presented and the state-of-the-art in their areas of interest.
These closing comments are included at the end of this volume and
are well worth the readers’ close attention.

The program was as follows:

WEDNESDAY, SEPTEMBER 6

Session Ia 9:00 am

CHaIrMAN: U. S. Lindholm, Southwest Research Institute
Martin Goland, President, Southwest Research Institute: Welcoming Re-
marks
Sudhir Kumar, Army Research Office—Durham, Durham, N.C.: Me-
chanics/Materials Aspects of Dynamic Loading

Session Ib 10:00 am

CuAIRMAN: W. Prager, University of California at San Diego
M. Reiner, Technion—Israel Institute of Technology, Haifa, Israel:
Dynamical Strength of an Ideal Solid With Definite Constitutive Equation
(Presented by Dr. Amnon Foux)
J. E. Bell, The Johns Hopkins University, Baltimore, Maryland: An Ex-
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perimental Study of Instability Phenomena in the Initiation of Plastic Wauves
in Long Rods

O. W. Dillon, Jr., University of Kentucky, Lexington, Kentucky: Plastic
Deformation Waves and Heat Generated Near the Yield Point of Annealed
Aluminum

Session IT  2:00 pm

CuarrMan: D. C. Drucker, Brown University, Providence, R.1.
P. Perzyna, Polish Academy of Sciences, Warsaw, Poland: On Thermo-
dynamic Foundations of Viscoplasticity
U. S. Lindholm, Southwest Research Institute: Some Experiments in
Dynamic Plasticity Under Combined Stress
M. F. Kanninen. A. K. Mukherjee. A. R. Rosenfield. and G. T. Hahn,
Battelle Memorial I[nstitute, Columbus, Ohio: The Speed of Ductile-
Crack Propagation and the Dynamics of Flow in Metals
J. M. Krafft, Naval Research Laboratorv, Washington, D.C.: Dynamic
Mechanical Behavior of Metal at the Tip of a Plane Strain Crack

THURSDAY, SEPTEMBER 7

Session III  9:00 am

CHAIRMAN: J. D. Campbell, University of Oxford, Oxford. England
J. J. Gilman, University of Illinois, Urbana. Illinois: Dynamical Behavior
of Dislocations
S. R. Bodner, Technion —Israel Institute of Technology, Haifa, Israel:
Constitutive Equations for Dynamic Material Behavior
J. W. Edington, Battelle Memorial Institute, Columbus, Ohio: Effect of
Strain Rate on the Dislocation Substructure in Deformed Niobium Single
Crystals
W. J. Gillich, U.S. Army Ballistic Research lLaboratories, Aberdeen
Proving Ground, Maryland: Constitutive Relationships From Impact
Studies

Session IV

CuamrMan: C. D. Lundergan, Sandia Corporation, Albuquerque, N.M.
A. H. Jones, C. J. Maiden, S. J. Green, and H. Chin, General Motors
Technical Center, Warren, Michigan: Prediction of Elastic-Plastic Wave
Profiles in Aluminum 1060-0 Under Uniaxial Strain Loading
C. H. Karnes, Sandia Corporation, Albuquerque, N.M.: The Plate Im-
pact Configuration for Determining Mechanical Properties of Materials at
High Strain Rates
E. A. Ripperger, The University of Texas, Austin, Texas, and H. Wat-
son, Jr., Southern Methodist University, Dallas, Texas: The Relationship
Between the Constitutive Equation and One-Dimensional Wave Propagation
ImMmpEyfeminiversityrofsWashington, Seattle, Washington: Plane-Strain
Plastic Wave Propagation in a Dynamically Loaded Hollow Cylinder
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FRIDAY, SEPTEMBER 8

Session V  8:30 am

CuHAIRMAN: D. M. Forney, Jr., AFML, Wright-Patterson Air Force Base,
Ohio
N. Cristescu, Mathematical Institute, Bucarest, Romania: Dynamic Plas-
ticity Under Combined Stress
K. C. Valanis, Iowa State University, Ames, lowa: Unified Theory of Ther-
momechanical Behavior of Viscoelastic Materials
W. E. Jahsman, Lockheed Missiles and Space Company, Palo Alto,
California: Static and Dynamic Material Behavior of Syntactic Foam
J. B. Cheatham, Jr., Rice University, Houston, Texas: The Effect of Pres-
sure, Temperature, and Loading Rate on the Mechanical Properties of Rocks

The Symposium was held under the joint sponsorship of the Army
Research Office—Durham and the Southwest Research Institute. The
committee responsible for the planning and arrangements for the
Symposium were:

Ulric S. Lindholm, Southwest Research Institute, San Antonio, Texas
(CHAIRMAN)

Sudhir Kumar, Army Research Office —Durham, Durham, North Carolina
(HoNOrARY Co-CHAIRMAN)

H. Norman Abramson, Southwest Research Institute, San Antonio, Texas
(HonNorarRy Co-CHAIRMAN)

Philip H. Francis, Southwest Research Institute, San Antonio, Texas (SEc-
RETARY)

David L. Black, Southwest Research Institute, San Antonio, Texas (Sym-
POSIUM COORDINATOR)

U. S. LinpHoLM, Editor



INTRODUCTION
MECHANICS/MATERIALS, ASPECTS
OF DYNAMIC LOADING

SubpHIR KUMAR

U.S. Army Research Office — Durham
Durham, N.C.

The behavior of materials under dynamic loads is obviously of con-
siderable interest in most mechanical analyses of design problems
where dynamic loads are present. Unfortunately, much of the engi-
neering design today is still based on the static loading properties of
the material rather than dynamic properties. Quite often this means
over-design at best and incorrect design resulting in failure in the
worst cases. The problem, however, has continued to exist due to in-
sufficient basic knowledge and understanding of the behavior of dif-
ferent materials in spite of significant advances made in the recent
past. This conference, and several other conferences [1-7] sponsored
by ARO-D, AIME, ASTM, OSR, ASME and Battelle in the last eight
years, is essentially an attempt towards such advancement.

The complex nature of the dynamic behavior problem can be seen
from Fig. 1-1, which depicts the whole range of interaction of dynamic
loads with various materials. Ideally, it will be desirable to know the
mechanical response to the full range of dynamic loads for each ma-
terial. However, certain load-material interactions have more relative
importance for engineering design, and significant work on them
exists already. Uniquely, the metals under both static and dynamic
loads can be cited as the outstanding case. Both the continuum mechan-
ics engineers and the metallurgical engineers found these materials to
be most attractive to study. At the same time, it must be confessed that,
relatively speaking, these materials were easier to handle for analysis
and for scientifically planned and reproducible experiments. Even so,
there is a great deal that we don’t understand about them, in spite of
voluminous scientific literature existing in this area. Each type of load
response, €.g., creep, vibratory or hypervelocity impact, 1s a big field

ix
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\//
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Silk, Wool,
] efc. _[
MATERIALS
(solid)

Fig. 1-1. Load Material Interaction.

in itself. Of course, the importance of plastics and composite materials
has been steadily growing as they become more and more competitive
with metals. Consequently, more work on them would be normally
expected in the future. For certain engineering problems and applica-
tions, e.g., in foundations of buildings and other structures, the knowl-
edge of behavior of soils and rock strata is of utmost importance.
Much of the investigations for such materials have been in the creep
type or slow strain rate studies. Engineering problems concerned with
higher rates of loading have to be solved by empirical and trial-and-
error methods while using very high factors of safety. As more tools
for scientific investigation of dynamic behavior of materials become
available, the activity and results in this field are also bound to grow.
The subject of the symposium today is thus a most challenging one and
it offers a lot of open fields for exploration.

The mechanical response of various materials may be classified in
several types, as shown in Fig. 1-2. For each type of behavior there is a
primary load environment. Considerable work has been done in creep,
fatigue, fracture and hypervelocity impact in the past. During and
after the World War II period, extensive activity in plastic wave propa-
gation, notably by von Karman [8] and Taylor [9], also took place. It is
perhaps noteworthy that about ten years back the knowledge of the
true mechanical behavior of materials in the low and high energy
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Types of Behavior of Primary
Materials Under Load -Environment
Dynamic Loads

Ablation High and Moderate
Creep, Relaxation Temps.
Fatigue Elastic Range
Viscoelastic Vibration or
Low Energy Impact
Elastic
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Fluid-like Flow and N Very High Vel. or
State Transformation, Hypervel.
e.g., Solid to Gas I mpact

Crack Propagation &
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Embrittlement

Fracture - both
brittle & ductile ]

Fig. 1-2. Material Behavior — Load Environment Diagram.

impact range covering the elastic, elasto plastic and viscoelastic type
behavior, the strain rate and thermodynamic effects, and the associ-
ated dislocation dynamics was quite elementary. Recognizing this,
about seven years back ARO-D initiated a small basic research program
to attempt to fill this gap. But before we get to that, itis proper to men-
tion that load environment, which is primarily considered in this pro-
gram, is only one of the four physical environments (Fig. 1-3) which in-
fluence the behavior of materials. Of course, the problem being quite
complex, it was desirable to consider the environment parameters
separately in order of their importance to the engineering problems.
Moreover, limited funds required limitation of the scope of this pro-
gram. At this point a brief mention of the ARO-D research programs is
in order. The various basic research projects supported by this agency
are in two major categories: one, Exploratory Basic Research, or basic
research in any area of choice of the investigator; and two, Oriented
Basic Research, or research in specific areas selected by ARO-D for
existing gaps and relative importance. The area of “Mechanical Be-
havior of Materials under Dynamic Loads” was selected as one such
arearfornOrientedsBasicsResearchs Including this conference today,
eight projects have been supported during the last six years. Five re-
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PHYSICAL ENVIRONMENT
OF MATERIALS

1
I [ I |

Temperature Pressure Loads Atmosphere
High, High Mechanical, Humid Air,
Ambient Atmespheric Static or Corrosive,
or Low or Vacuum Dynamic Gas and/or
Liquid

Fig. 1-3. Materials Environment Diagram.

search projects are presently active. A listing of all projects which have
been supported under this program is as follows:

1. J. F. Bell,* “Finite Amplitude Wave Propagation in Solids,” Johns Hopkins Uni-
versity, Baltimore, Md. (Active)

2. U. S. Lindholm and H. N. Abramson, “Experimental Investigation of Dynamic
Material Properties,” Southwest Research Institute, San Antonio, Texas (Active)

3. F. A. Donath, “Effect of Rate of Loading and Unloading on the Deformational Be-
havior of Rocks,” Columbia University, New York (Terminated)

4. J. Marin, M. G. Sharma and V. H. Neubert, “Dynamic Stress-Strain Behavior of
Engineering Materials,” Pennsylvania State University, University Park, Pa. (Active)

5. E. A. Ripperger, “Stress-Strain Characteristics of Materials at High Rates of Strain,”
University of Texas, Austin, Texas (Recently Terminated)

6. H. Kolsky, “The Mechanical Behavior of Plastics and Metals at High Rates of Load-
ing,” Brown University, Providence, R.I. (Active)

7. 1. M. Fyfe, “The Applicability of Stress-Strain Laws to Dynamic Problems,” Uni-
versity of Washington, Seattle, Washington (Active)

8. U. Lindholm, “Symposium on the Mechanical Behavior of Materials under Dy-
namic Loads,” Sep. 6, 7, 8, 1967, Southwest Research Institute, San Antonio,
Texas.

There are two other projects which are related to this area and which
are supported under a program on “Brittle Fracture,” managed by the
Metallurgy and Ceramics Division of ARO-D. These are:

1. J. J. Gilman, “Surface and Fracture Energies of Solids: Response to Impact,” Uni-
versity of Illinois, Urbana, IlL

2. G. T. Hahn, “Experiments to Test a System Analysis of Brittle Fracture,” Battelle
Memorial Institute, Columbus, Ohio.

You will hear presentations in this symposium on the work of Bell,
Lindholm, Ripperger and Fyfe, and so it is not necessary here to go
into details of their work. It will suffice to state that all four of these
projects concerned themselves with the mechanical properties of met-
als under impact loads (low and high energy impacts leading to elasto-
plastic behavior). All have studied strain rate effects. Bell and Rip-
perger have studied behavior in compression due to axial impact;
Lindholm has studied both compression and tension due to axial im-

*This projectis actually supportediitithie Exploratory Basic Research Program, but
is included here because of its closeness with this OBR program.
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pact as well as biaxial stress response; and Fyfe has studied the ma-
terial behavior under conditions of cylindrical expansion. Different
experimental technique, different types of specimens and different
strain measurement methods have been used in all four projects.
Since the apparent behavior of a material is quite often influenced by
these conditions, it is important that the true behavior be studied by
different methods to isolate any excessive influence of the technique
and to verify the validity of the data. The work of Donath was con-
cerned with behavior of rocks (Shale and others) under combined
stress loads and very low (creep like) strain rates. The project work of
Marin, Sharma and Neubert is in three distinct parts. The work of
Marin, who regrettably died a couple of vears back, was concerned
with low strain rate studies of plastics in tension, bending and torsion.
Sharma’s work has been on the viscoelasticity of plastic materials with
an elastic filler. He studied the dynamic behavior of these materials
by determining relaxation modulus and creep compliance for a broad
range of frequencies and then using the Boltzman superposition prin-
ciple. Recently his work consisted of determing constitutive equations
including inertia effects for a composite viscoelastic material. Effects
of size and percentage of the volume of the filler are also being included
in this study. Neubert’s work was a study of mechanical properties of
metals by axial impact of bars with slightly rounded impacting ends.
Recently he has been working on dynamic bending of cold-worked
mild steel bars to evaluate stress, strain and strain rate characteristics
for both elastic and plastic deformations. Kolsky’s work in the past was
on the behavior of plastics under dynamic loads combined with static
loading to produce a prestrained polymer. Vibration and rebound ex-
periments, combined torsion and tension loading, and Hopkinson
bar technique were used. Besides plastics, unicrystalline zinc (in Hop-
kinson bar tests) was also used. The projects of Gilman and Hahn are
primarily concerned with brittle fracture. Understandably, however,
dynamic loading being an inherent feature of fracture, their work is
intimately related to the subject of this symposium. Since presenta-
tions related to this work will be made by both of these gentlemen,
we will not go into any detail of their research.

Besides the work sponsored by ARO-D, some significant basic re-
search work is being conducted by the Ballistic Research Laboratories
(both in-house and externally by contract). Primary contacts for this
work are Drs. R. Eichelberger and William Gillich. Presentation will
be made to you by Dr. Gillich. Besides Gillich’s work on “Plastic Wave
Propagation Studies in Single Crystals and Polycrystalline Materials,”
two other research projects being conducted in-house are by A. S.
Elder on “Determination of Mechanical Properties of Viscoelastic
Materials,” and by J. T. Frazier on “Elastic-Plastic Wave Propagation
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in Metallic Solids.” These projects are closely related to the scope of
the ARO-D program discussed above. Besides these, there are four
more projects supported by BRL by contract with N. Davids at Penn-
sylvania State University, E. H. Lee at Stanford University, I. F. Weeks
at General Atomics Division of General Dynamics Corporation, and
C. J. Maiden, W. Isbell and A. H. Jones at General Motors Corpora-
tion. You will hear a presentation by Maiden at this meeting. The other
three studies are all analytical and computational. The investigators of
these studies approach the problem of determination of constitutive
relations by a sort of inverse approach. The problem is to determine
the constitutive relations by analytical and computation methods start-
ing with the results of certain impacts experiments. The behavior of
the materials used in these experiments is assumed to be elasto-plastic
or thermo-elasto-visco-plastic. This is an interesting approach and some
insight into material behavior that may not be otherwise possible may
be achieved this way. Perhaps Dr. Gillich will tell us more about this
approach in his presentation.

Some work on behavior of soils under dynamic loads is being con-
ducted by and under the sponsorship of the Engineering Research
and Development Laboratories, Ft. Belvoir, Virginia, and the Water-
ways Experiment Station, Vicksburg, Mississippi.

Work on metals and ceramic materials behavior under dynamic
loads pertaining to yield, flow and rupture is being conducted at and
under the sponsorship of Materials and Mechanics Research Center,
Watertown, Mass. Primary contact for this is Dr. R. Beeuwkes. By
contract, they are sponsoring the work of Volker Weiss at Syracuse
University on constitutive relations and rupture locii of fcc metals, and
the work of Kobayashi at University of Washington on notch stress
analysis taking strain rate considerations into account.

In addition to the work in the above laboratories, there are several
other research efforts conducted by the various Army laboratories
which are either directly or indirectly related to dynamic behavior of
materials. It will be hard to cite them all. Perhaps, the highlights may
be mentioned as:

Picatinny Arsenal Plastics materials
Dover, N.J.

Cold Regions Research Laboratory Ice, ice composites and snow
Hanover, N.H.

Frankford Arsenal Dynamic behavior of birefringent materials
Philadelphia, Pa.

Natick Laboratories Synthetic fabric and fibers

Natick, Mass.

Research laboratories at Viscoelastic response of soils

Army Tank-Automotive Command,
Warren, Michigan
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In the growth of thought on the “Mechanical Behavior of Materials

under Dynamic Loads,” today’s conference represents an important
step. Starting from an elastic behavior study and later the elasto-plastic
behavior, the strain rate dependence [10] became the important thing.
It was recognized, however, that the thermodynamic considerations
and dislocation dynamics were inherent to the problem and that strain
rate sensitivity depended on whether the dislocation mechanisms were
thermally or purely mechanically activated [11]. This conference to-
day is supposed to highlight the constitutive relations of material
behavior based on all the above considerations.

Gentlemen, let me end this talk with a greeting to all of you. I wish

you Happy Constitutive Relations for the next three days.

5
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DYNAMICAL STRENGTH OF AN
IDEAL SOLID WITH DEFINITE
CONSTITUTIVE EQUATION

MARKUS REINER

Technion— Israel Institute of Technology
Haifa, Israel

ABSTRACT

The mechanical behavior of a solid is in general determined by the parameters of in-
stantaneous elasticity, delayed elasticity with retardation time, How with relaxation time
and strength, the latter including resistance to plastic yield or fracture. A mechanical
model which can represent these properties was proposed by Burgers [1]. Its constitu-
tive equation was derived by Reiner [2]. In the present paper the thermodynamic theory
of strength by Reiner and Weissenberg [3] is applied upon the strength behavior of a
solid cylinder under the action of dynamic deformation by axial loads increasing in time
at a given rate. According to this theory, failure will occur when the conserved part of
the strainwork reaches a certain limit. It will be examined how the corresponding stress
is affccted by the rate of stress. It is known that, in general, with increased rate of stress
the strength increases. This assertion will be examined under the conditions mentioned
above.

1. INTRODUCTION

The mechanical behavior of a solid is, in general, determined by the
parameters of instantaneous elasticity, delayed elasticity with a retarda-
tion time and recoverable deformation, flow with relaxation time and ir-
recoverable deformation and strength which we shall here understand
as resistance to failure which is plastic yield or fracture. These proper-
ties refer to the deviators of stress and strain and it is assumed that in
volumetric deformation d, the material is perfectly elastic, described
by the equation

~p = Kd, (1-1) %

not subjected to {racture when'd, is negative, i.e., under isotropic pres-
sure. Fracture can take place under isotropic tension. In the present

“sinranmorergencralyapproachponeswouldy have to distinguish also solid volume vis-
cosity and liquid volume viscosity, sce Reiner [4], which we disregard here.

1
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(element Hy modulus P
M-bodyﬁ M=H-N
|element Nu coefficient Nu

K=H|N

Bu=M-K
Fig. 1. Model for a Burgers-body
M-body = Maxwell body
K-body = Kelvin body

m shear modulus

M coefficient of viscosity

paper we shall not consider volumetric deformations and restrict our-
selves to the deviators of stress and strain and their time-derivatives.

As a model representing the rheological behavior of a solid, Zener
[5] proposed one, postulated before by Poynting and Thomson [6].
However, this model cannot account for irrecoverable deformation.
A model which permits of irrecoverable deformation was proposed
by Burgers [1]. It is shown in Fig. 1. It is built through a combination
in series of a Maxwell elastic liquid (M) and a Kelvin-viscous solid (K).
These two result from combinations of a Hooke-solid (H) and a New-
tonian liquid (N) in series and in parallel. The Burgers material ac-
cordingly has four rheological parameters in shear, namely two elastic
My and pg and two viscous ny and my.

Reiner [2] has derived the constitutive equation of such a material

o o .
with d,, for the deformation deviator and s,,, for the stress deviator,
where the superscript ° indicates the deviator and 7 and j are tensor
indices, in two forms, namely
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For simpler writing we shall omit the indices.

2. FAILURE CONDITION

Our problem is to find an expression for the dynamical strength of a
material, for which we postulate the Burgers model, at different modes
of loading, examining more especially the case when uniaxial loads
tend to very large values.

We shall use the Reiner-Weissenberg [3] thermodynamic theory of
strength.

In the deformation of a body, the external forces expend work
which is converted into stress work. Part of the stress work is conserved
as potential energy; this part we name strainwork. The other part is
converted into heat energy and is dissipated. To produce rupture of
the body, energy is required; this can come only from the potential
energy or strainwork.

The Reiner-Weissenberg theory postulates that failure takes place
when the deviatoric strainwork per unit volume reaches in the body a
certain maximum value — the resilience R, which is a material property.

The stress work expended upon the Bu-body is the sum of the stress
works expended upon its two components, or

WBu = WM + WK- (2'1)

Both stress works are partly conserved and partly dissipated through

viscous resistance. For the Maxwell-body we have
2

oy =5 dy = QSTSV 2qu (2-9) *
where w is the stress power per unit volume.
The conserved part is
Weyr = SySyl 2. (2-3)
For the Kelvin-body
wy = Sd';( = QPVI\'dl\’d.K + th’(dh’)z (2-4)

*Reiner [7]. Note that s2'is short for s,sss, with @ and 8 summation indices in ac-
cordance with Einstein’s summation convention.



4 Markus Reiner
with the conserved part
Wey = Q#Kdl\'d'l\" (2-5)

The conserved stress-power of the deviator is accordingly for the Bu-
body

SuSu
Wepu =
2y

and the conserved stress work starting from a stress-less and strain-
less state

+2 I-‘-A'dl\dl\' (2-6)

Su?
Wepu = Zﬁl + pxdy® (2-7)

For the Burgers body

SM=Sk=13

d= dy + dy &8
or
dx=d — dy. (2-9)
But
dy=5—t | st (2-10)
2uy  2my
and we finally have for the deviatoric part
Z;C=4iM+p,K [2—51;—2”%” odt]z. (2-11)
The failure condition is found by introducing
w.=R. (2-12)

We shall denote by ¥ the failure stress and by 6 the failure deformation.
We assume that through appropriate experiments the parameters
Mars Mks Mars M have been determined.

3. STEP-TYPE LOADING

Let a cylindrical specimen of the considered material be subjected
to a step-type loading, that is, an instantaneous increase in stress from
s =0 to s = s, = constant. There are three distinct cases of failure in
such loading: 1) failure occurs instantaneously with the application
of the load; 2) the applied load causes delayed failure; 3) there is no
failure at all. These cases depend on the magnitude of the applied s..
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During the instantaneous loading the response of the material can
be only through the spring of the Maxwell element when d = 5./2u,,.
The time dependent deformation is obtained by integrating (1-2).
We have for the total deformation

Sel Se iy se (1 1
d=2L (——z)+—(—+—). 31
2my 2k xp Nk 2 \py - pg ( )

In this case we find from (2-11)

4w, 1 1 2 . 1 .
u‘,=——+———exp(—ﬂt>+—exp(—2ﬂt> (3-2)
Se” My My My Nr My Nk

and the failure criterion gives

. Ma 2y Moy Mg Mr -
9,2 =4R [l+——~—eXJ<——t>+ ex (—2—t>]
‘ Har 12 MK I Nk Mk p n

(3-3)

When the stress 9, is applied. failure will take place after the lapse of
time 7 which can be calculated from

9 ) , |
1+ By =Hu exp <— K -r> il exp <—2 Lad 'r> = 4R uy /94
[29% MK Nk M Nk

(3-4)

T= —Z—Z In <1 =+ \/;,c,‘» <4R/19f2 - %)) (3-5)

We find

M
We see that if the stress applied is
5(’ =2VuyR (3-6)

7= 0 and failure will set in at once. On the other hand, when a smaller

stress
3 Mark g
9,=2\\———R (3-7
‘ M+ g )

is applied, it will take infinite time (r = =) for failure to take place.
If s < 9, there will be no failure however long we may wait. If

¥, < s, < 9, failure will take place at time 0 < 7 < = to be found from
(3-3). The corresponding failure deformations are 0 ="VR/w,, 0 = =.
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4. CONSTANT STRESS RATE

Let us now assume that a dynamical test is performed in which the
stress applied is uniaxial with constant rate, or

s=at. (4-1)
Equation (1-2) with the introduction of (4-1) yields

af(l 1 1 Mk Kk
d=—[(—+—)t+—t2+—( <——t>—1>]. 4-2
2 [\py g 2My /-LKZ xp Nk ( )

When (4-1) and (4-2) are introduced into (2-11), the deviatoric strain-
work is obtained as:

o 2 1 1
wcza— [(——i——) 2-}—27’—1(2t<exp <—&t)—- 1)
4 [\py gk 1% Nk

2
+% <exp (—2 % t) — 2 exp (—% t) + 1)] (4-3)

Let 7 be the time when failure takes place, then
d=ar. (4-4)

The failure condition is

211
R=“—T[<—+—>+g"—’;<exp (—ﬂf)— 1)
4 My Mk T KK Nk

1 m® © W
+_2;11§§ (exp (—2n—i'r> — 2 exp (—Ei 7) + 1)] (4-5)

T

from which

2 VR
a= u :
1 1 2 mg Mk 1 7 Mx Mk
T e () )R () e ()
\/(I"M [P AL S S 2 e \ P e P T
(4-6)
The failure stress is:
9= 2 VR
1 1 2 ng (2 1 g MKk Mk
) e () A e ) 2ea ()
(l‘LM ) 1\ P\ 2 s \ P ' P T
(4-7)

and the failure strain is:
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1 1 1 . .
\/E[(—“f’_)T‘F Tz+ﬂ’\;(exp<—ﬂr)—l)]
My Mk, 2myy MK Nk

1 1 2nx : 2 .
\/<—+—) 72+—n—'2‘7 (exp ("ﬁT)— 1)+n—"3<exp (—2&T> — 2 exp <—ﬂ‘r) + 1)
M Mk M Nk Mx' Nk Nk

(4-8)
We now consider two extreme cases.
(1) We assume 7 — (). Then from (4-6) a — = and
1.93c =2V R/.LA\[; Z—Q:l =0 (4-9)
R db
0,=~—: - =0. 4-10
152 da|3c ( )

(2) We assume 7 — o, Then ¢ — 0 and

Rpsun dad
Y= 2\ T =% 4-11
’ M+ g dd|0 ( )

6, — w; %’{O =, (4-12)

Conditions are shown in Fig. 2.

aje

Rimbk
Y FMI P

Am

Fig. 2. Fracture stress and fracture strain as functions of the rate of stress

B4 fracture stress
7] fracture strain
a rate of stress

For any rate of stress 0 < a < = the fracture stress will be

Ruypg
2y < 9 < 2 VR, 4-13
Mar + ik Har (4-13)

and the fracture strain

(4-14)
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5. CONCLUSIONS

We have assumed that the mechanical behavior of a solid material is
adequately described by the constitutive equation of a Burgers body. It
should be pointed out that there is no model and therefore no consti-
tutive equation which is more general. This is also so with regard to a
model often used in investigations consisting of two or more Maxwell
bodies coupled in parallel. It is, of course, possible to use a number of
Bu bodies coupled in parallel or in series and even an infinite number
of such bodies. Conditions are then more general numerically, but not
in principle.

Using the Reiner-Weissenberg theory of strength, we have shown
that there is a delayed failure in a step-like stress application. The de-
pendence of the failure stress on the stress rate was analyzed. It was
found that in a dynamical test with a stress increasing at some rate a,
the fracture stress depends not only upon the magnitude of the stress
but also upon the rate of stress and increases with increasing rate of
stress. This fact is well known, but has so far not been shown to be in-
herent in a theory of strength. The failure stress has a maximum value
when the rate of stress is very high (¢ = ) *, and a minimum when it is
very low (@ = 0). The variation of the fracture strain is in the opposite
direction. It is clear that it becomes infinitely great if we wait for an in-
finite time. At very high rate of stress it has a definite value. Conditions
are shown in Fig. 2.
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NOTATION

rate of stress

Burgers body
deformation

initial deformation
volumetric deformation
base of natural logarithms
Hooke-solid

tensor indices

bulk modulus

Kelvin body

RS TS AR TS

#ltymust:be pointed-outsthatiinsthestheory as expounded here, the inertia of the ma-
terial has been neglected.
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¢.,m tensor indices

£ longitudinal

M Maxwell body

N Newtonian liquid

° as superscript indicates “deviator”
p isotropic pressure

R resilience

s stress

So initial stress

Se constant stress

w stress work

w stress power per unit volume

w,. conserved stress power

My coeflicient of viscosity of M-body
Nk coefhcient of viscosity of K-body
U2 rupture stress

0 rupture deformation

My shear modulus of M-body
uy  shear modulus of K-body
T time of rupture
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AN EXPERIMENTAL STUDY OF
INSTABILITY PHENOMENA IN THE
INITIATION OF PLASTIC WAVES
IN LONG RODS

JaMmes F. BELL

The Johns Hopkins University
Baltimore, Md.

ABSTRACT

A series of experiments are considered for stress-time histories at the impact face for
wave propagation in long rods. From these data it is shown that the finite deformation
mode and transition stability structure of the writer’s generalized parabolic stress-strain
function is important in the problem of finite amplitude non-linear wave initiation and
growth at the impact face and in the three-dimensional first diameter when considering
the symmetrical free-flight impact of identical long cylindrical rods.

In 1949 the writer began a series of experiments in finite distortional
deformation; the number of experiments now exceeds 1600. When
these experiments are combined with the nearly 600 similar experi-
ments from the 45-year literature, over 2200 experiments in 27 solids
have been analyzed by the writer during the past two decades. Among
the writer’s experiments considered during this time have been one-
microsecond long finite amplitude wave impact experiments at strain
rates of 70,000.0 sec™! using diffraction gratings for strain determina-
tion, and, at the other strain-rate extreme, a 357-hour continuously
monitored quasi-static experiment at a strain rate of 0.000000006
sec™!. Test temperatures have varied from 4.2° K to 1809° K, or from
T/T,, = .003 to T/T,, = .98, where T is the test temperature and T, is
the melting point of the crystal of interest. Experiments have included
50% binary combinations of elements and a variety of purities to
99.999+%. Systematic experimental studies have been made of the
effects of crystal structure, specimen geometry, prior deformation
history, prior thermal history, grain size of aggregates, melting points,

10
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and type of experiment, i.e., whether uniaxial tension, compression, or
torsion of hollow tubes.

In a monograph scheduled to be published in a few months, the
writer [1] has shown from the detailed examination of 1200 individual
experiments (both polycrystal and single crystal) in 27 crystalline solids
that there exists a single generalized stress-strain function applicable to
the uniaxial tension or compression finite distortion of all solids con-
sidered. These experiments have shown that without question the
major finite distortion problem in crystals is that of the stability proper-
ties of a finite deformation mode and transition structure which char-
acterizes all of these solids. Some aspects of this finite deformation be-
havior in single crystals have been described earlier [2]. The explicit
form of the generalized uniaxial stress-strain function which these
studies furnish is:

o= @)"uw0)By(1 = T/T,)(e — &)"* (1)

where o is the uniaxial stress, € is the uniaxial strain (both referred to
the undeformed state of the material); B, is a dimensionless universal
constant, By = 0.0280; w(0) is the zero point isotropic linear elastic
shear modulus of any one of the 27 crystalline solids studied; the in-
teger,r(r=1,2,3,4 - - -) designates the finite deformation mode; and
g, designates the parabola intercept upon the strain abscissa of any
particular deformation mode of interest. (For the initial finite deforma-
tion mode of dead annealed solids, ¢, = 0).)

Extensive, as yet unpublished experimental studies contained in the
monograph referred to above [1], have been made by the writer to de-
termine the factors which control the finite deformation mode index,
r, for initial parabolas, and whether or not a transition from one value
to another will occur at any one of a series of specified critical transi-
tion strains. Two illustrations of this behavior are shown in Fig. 1 and
Fig. 2.

A comparison of quasi-static experimental data with (1) is best ac-
complished in a ¢* vs € plot in which deformation modes appear as a
series of straight lines. Such plots of a series of constant stress-rate
uniaxial tension experiments (circles) are compared with prediction
from (1) (solid lines) for completely annealed commercial purity
aluminum polycrystals at room temperature. The variable strain rate
is in the range € = 107 sec™'. The initial finite detormation mode for
all of these experiments is r = 3, with transitions to r = 5, and then to
r =7 at the known critical strains (known from hundreds of dynamic
and quasi-static_experiments) of ey=4.2% and ey = 7.5%. Initial
finite deformation modes of r= 1, 7= 2, and r= 4 have been produced
in this same completely annealed solid under controlled conditions.
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In general the finite deformation mode governing dynamic finite
amplitude wave propagation in this commercial purity completely
annealed aluminum polycrystal is r= 2, as may be seen from the
averaged diffraction grating dynamic plasticity experiments in Fig. 2.
These 59 symmetrical free-flight impact experiments had 0.005 in.
long, 30,720 lines per inch diffraction gratings from which the strain-
time data were determined at four positions from the impact face. All
of these experiments were performed at the same impact velocity of
2030 cm/sec. It was the observed constant wave speeds and the ob-
served invariable relationship between particle velocity and strain
which established the applicability of the finite amplitude wave theory
of Taylor [3], von Karman [4], and Rakhmatulin [5] in aluminum of
various purities and in copper, zinc, lead, magnesium, nickel, and
70-30 a-brass. The dvnamic data in aluminum shown in Fig. 2 pro-
vided a finite deformation mode index of » = 2, as the comparison of
predicted and measured maximum strain reveals.

In the present paper the influence of the stability properties of this
finite deformation mode and transition structure upon the initiation
and growth of finite amplitude waves at the impact face is considered
for the axial collision of long cylinders. Of all the many dynamic
plasticity problems the writer has studied during the past two decades,
the phenomenon of plastic wave three-dimensional initiation and
growth in the first diameter has been one of the most interesting and, at
the same time, perplexing. In numerous earlier papers [6-14] experi-
mental studies were aimed at providing at least a description of this
phenomenon.

These experimental studies have revealed that at impact a high-
peaked stress uniaxial strain front parallel to the impact face is in-
augurated. This high-stressed wave front collapses in the first diameter
due to the growth of finite distortional deformation at the free-sur-
faced side walls of the cylinders. By one diameter from the impact face
(independent of the actual dimensions) in all of the crystalline solids
studied, there is a stable one-dimensional uniaxial stress front satisfying
the constant wave speed and invariable particle velocity finite strain
conditions of the finite amplitude wave theory and governed by (1) for
some measurable finite detormation mode index, r.

As an example of this behavior a piezo crystal measurement of the
stress-time history at the impact face for a symmetrical free-flight im-
pact of completely annealed commercial purity polvcrystalline alumi-
num is shown in Fig. 3. Following the initial peak stress in this experi-
ment there is an initial collapse to an intermediate dynamic overstress
before a later reduction to the theoretical maximum stress for the finite
amplitude wave theory, with a mode index r=2 in the governing
stress-strain function from (1).
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Fig. 3. A piezo crystal measurement of stress-time history at impact face for sym-
metrical free-flight impact in annealed polycrystalline aluminum compared with pre-
dicted maximum stress for parabolic stress-strain function of mode index r=2. The
impact velocity is 1900 cm/sec.

Much of the writer’s earlier experimental work related to this first
diameter wave initiation and growth was concerned with the quantita-
tive determination of the magnitude of the peak stress, the dynamic
overstress, and the study of the fact that above critical velocities, now
known to coincide with quasi-static transition strains (see Fig. 1), the
intermediate dynamic overstress disappears and the peak stress falls to
the predicted parabolic maximum stress for the finite deformation
mode index given from the constant wave speed data. In aluminum
this intermediate dynamic overstress disappears above an impact
velocity of 5080 cm/sec {10, 14] which for r = 2, in terms of the finite
amplitude wave theory, corresponds to the critical strain of 7.5% (see
Fig. 1). A symmetrical free-flight impact piezo crystal measurement of
Filbey.[15,.16,.17] at.animpact.velocity of 7100 cm/sec, Fig. 4, shows
this collapse of the very high peak stress to the theoretically predicted
maximum parabolic stress from (1) for the finite amplitude wave
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theory. One notes that the mode index is r = 2, and there is no inter-
mediate dynamic overstress.

The invariable relation between finite strain and longitudinal particle
velocity is given by: .
U =f ¢, de (2)

(

)

where ¢,(e) = \,d_o;)ﬁﬁ are the wave speeds which depend upon strain

but are constant for any particular strain amplitude. Introducing (1)
into the relation for ¢, (2) becomes (3) or (4) for a parabolic law:

it = X (Y POB(1 —~ TIT,)e" *)
or
o 8o
= Op@ )BT — TTT,) @

For a given maximum particle velocity i = v,. The maximum stress
depends upon the mode index, r. For example, for vy, = 2030 in./sec, as
in Fig. 2, opax(r = 2) = 8300 psi, while opnax(r = 1) = 9520 psi. This is
close to the measured dynamic overstress at this impact velocity and
suggests an initial finite deformation mode instability in the finite
amplitude wave initiation.

Recent experiments of the writer for axial impacts of annealed solids
in which hitter and struck specimens are different elements, and recent
finite amplitude wave propagation studies by Hartman [18] in sym-
metrical impacts in 70-30 a-brass have shown that it is possible to pro-
duce finite amplitude waves satisfying both the constant wave speed

120 ALUMINUM, 99.16% Purity , 300°K , Test 434, (Filbey)
V,= 7100 cm/sec
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BO Y
7
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20}
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Fig. 4. A piezo crystal measurement of stress-time history for a symmetrical tfree-tlight
impact experiment above the critical velocity of 5080 cm/sec. For clarity the initial peak
stress portion of the experiment is shown on a different time-scale. The mode index is
r=2.
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PIEZO CRYSTAL EXPERIMENT LOAD BAR EXPERIMENT

nary Specimen

ELASTIC-PLASTIC BOUNDARY EXPERIMENT

Fig. 5. Experiment for determining boundary stress-time histories.

and invariable finite strain vs particle velocity conditions, but with dif-
ferent stable finite deformation mode indices, r, from one experiment
to another in the same solid.

In Fig. 5 one sees three types of experiments which give stress-time
histories at the impact face for differing impact conditions. Each of
these experiments, as may be shown from diffraction grating measure-
ments of strain, generates non-linear wave fronts beyond the first diam-
eter, satisfying the finite amplitude wave theory. In the symmetrical
free-flight impact experiment, vy, = v,/2.

Figures 3 and 4 have shown examples of the piezo crystal experiment
in completely annealed polycrystalline aluminum. Figures 6 and 7
show the data from a load bar experiment and an elastic-plastic
boundary experiment for nearly the same impact velocity as the piezo
crystal experiment of Fig. 3. In the elastic-plastic boundary experiment
the theoretical dynamic overstress for r =1 very rapidly falls to the
theoretical maximum stress for r= 2. Extensive diffraction grating
measurements in the annealed specimen of this experiment, which are
described elsewhere, have shown that the non-linear wave fronts have
constant wave speeds and maximum strains for the mode index r = 2.
The predicted stresses of Fig. 6 were determined by equating stresses
and particle velocities at the elastic-plastic boundary, where o = Ee for
the hard bar, and the annealed bar has the parabolic stress-strain func-
tion of (1). In completely annealed polycrystalline aluminum the dy-
namic overstress is always present above the first critical velocity of 582
in./sec [7] and below the third critical velocity of 2000 in./sec [10].
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Fig. 8. Two load bar experiments in annealed polycrystalline copper at the desig-
nated impact velocities showing the agreement of the maximum stress with the predicted

value for a mode index of r = 4. Note the absence of an intermediate dynamic over-
stress.
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In Figs. 8 and 9 are shown load bar experiments in annealed copper
for which the most usual finite deformation mode index is r = 4 but for
which in dynamic tests, unlike aluminum but similar to a-brass, dif-
ferent stable dynamic mode indices of r = 3 and » = 5 are occasionally
seen. These load bar data in copper show two experiments in which no
dynamic overstress is present. The maximum experimental stress has
the mode index, r = 4, determined from wave speed studies in this
solid [19]. One experiment (Fig. 9) in copper has a higher stress,
approximating an r = 3 mode index.

SUMMARY AND CONCLUSIONS

It was the purpose of this paper to show that finite deformation
mode stability is of importance in the finite amplitude wave first diam-
eter wave initiation and growth, even though the finite amplitude wave
propagation beyond the first diameter is stable and completely specified
by the one-dimensional uniaxial stress finite amplitude wave theory.

The initial collapse of the uniaxial strain front may be directly to the
stable finite deformation mode outside the first diameter, as was shown
in Fig. 4 and Fig. 7 for aluminum and copper; or, the first collapse may
be to an intermediate unstable deformation mode which undergoes an
immediate transition to the final stable mode of the finite amplitude
wave propagation outside the first diameter, as shown in Figs. 3, 6, and
7 for aluminum.

Each of the three experiments considered has different impact-face
conditions. An inspection of the data reveals that the duration of the
intervening deformation mode and the manner of its transition to the
stable deformation mode is affected by these differences in experimen-
tal impact conditions. The aluminum load bar experiment of Fig. 6, for
example, required a specimen twice as long as that for the piezo crystal
measurement of Fig. 3 or the elastic-plastic boundary experiment of
Fig. 7 to establish a stress plateau at the stress maximum of the stable
parabolic mode index of the finite amplitude wave theory.

Previous empirical calculations of the dynamic overstress [6, 10, 14]
may be shown to be related to the present stability calculation.

The fact that in axial cylindrical impact the intermediate dynamic
overstress sometimes is present and sometimes is not, introduces a
probability aspect which eliminates geometric radial effects and vis-
cosity as plausible explanations of the phenomenon. This type of be-
havior is entirely consistent with a finite deformation mode and tran-
sition structure which is now known to characterize quasi-static
deformation in the same solids. Further support for this proposed
explanation of the dynamic overstress arises when it is observed that
changes in the behavior always occur above and below the specified



20 James F. Bell

critical strains known from quasi-static experiment. These same critical
strains through the finite amplitude wave theory have been shown
earlier to have corresponding critical velocities at which the marked
changes in finite wave initiation were noted several years ago [6, 10,
13, 14].

That the stability properties are important to the study of the initia-
tion and growth of non-linear finite amplitude waves offers an inter-
esting new set of theoretical problems in dynamic plasticity where the
major issue is finite elastic stability rather than viscosity.
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PLASTIC DEFORMATION WAVES AND
HEAT GENERATED NEAR THE YIELD
POINT OF ANNEALED ALUMINUM

Oscar W. DiLLON, JR.

University of Kentucky
Lexington, Kentucky

ABSTRACT

Experimental data on the propagation of deformation waves and the heat generated
during the plastic deformation of annealed aluminum are presented. Particular empha-
sis 1s given to the transition from the elastic to the plastic state. Wave propagation data
that are consistent with annealed aluminum being mechanically unstable under impact
loading are given. Some wave propagation results for specimens made by gluing soft and
hard sections together are included.

Experimental data on the heat generated in annealed aluminum tubes undergoing
torsional oscillations at about one cycle per second are also presented.

INTRODUCTION

In this paper we are concerned with the dynamic behavior of a single
material-annealed aluminum. This is the same material used by the
author in several papers in recent years and, furthermore, is as close as
possible to that used by Bell for many years. However, the range of
strains involved and the experimental method are entirely different
than his.

In order to put the present work into focus certain aspects of the
author’s research are reviewed in more or less chronological order.
This program began [1] with a completely theoretical interest in cou-
pled thermoelasticity. The lack of relevant experimental data in the lit-
erature suggested an attempt be made to obtain such information.
These data have never been obtained but it soon became interesting to
measure the heat generated as metals deform in the plastic range, and
therefore in coupled thermoplasticity [2, 3]. This work had been done
by G. I. Taylor [4] in the early days of plasticity but modern instru-
ments permitted one to obtain different data.
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22 Oscar W. Dillon, Jr.

It is quite common to discuss the difference between thermody-
namics and thermostatics as applied to continuous media. Therefore
an experiment in which thermal and mechanical equilibrium were
more nearly approached was a rather natural thing to attempt. The
end result is a test where it takes three weeks to do the experiment
needed to obtain a stress-strain curve for a single specimen. We were
very lucky that this work began with a material in which creep was mini-
mal in slowly loaded tests. The results of three experiments in which
the load is applied very slowly are shown in Fig. 1. Two of these speci-
mens were thought to be identical and in view of some later results it is
emphasized that variations between specimens do exist in the static
tests.

The primary point of interest in Fig. 1 are the long plateaus which
one observes as one very slowly loads the specimen. A test which lasts
an hour does not exhibit as many sharp steps as are shown in Fig. 1.
The closer one comes to having equilibrium conditions, the sharper are
these changes in the tangent to the stress-strain curve. It is relevant to
point out that the phenomena of a serrated stress-strain curve is not
original with us and that there are many metallurgical mechanisms
which are consistent with such a response. It is very natural to consider
what a serrated constitutive relation means to problems of wave propa-
gation. Clearly incremental waves can travel at the elastic velocity. How-
ever, it is also easy to observe very slow waves if one is making measure-
ments when the plateaus actually develop. One “wave” was observed to
take twenty minutes to propagate four inches. One simply has to instru-
ment to obtain data for the times needed in order to observe these
slow waves.

Ordinarily I wouldn’t dwell much on this next point but it seems to
be a point of confusion in discussions with many people. If one as-
sumes that a serrated constitutive relation applies to a given material,
then it is an easy theoretical problem to show that one must use a slow
loading experiment in order to observe the details of the response
sufficiently well that one can use the data as a constitutive relation. In
other words serrated constitutive relations exist for all rates of loading
but one can properly observe them only in slowly loaded tests. However, by
itself the observation of slow waves does not conclusively prove that the
serrated relation is a constitutive one—it is conceivable that the ma-
terial doesn’t have a simple constitutive relation or that the approach
to it is not stable with respect to the rate of loading. The Instron test
simply is a “dynamic” experiment for unstable materials and causes the
stress to be associated with the wrong strain.

A few people have now become convinced that serrated relations are
real enough but frequently say to me “surely this does not apply to real
dynamic problems, such as those of impact.” That is saying in different
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Fig. 1. Shear stress-shear strain data obtained in slowly loaded tests. Specimen Nos.
457 and 626 were thought to be identical while No. 613 was made by drilling a rod and
therefore slightly different. The strain measure is the tensor component and hence one-
half the strength of materials value.

words that Fig. 1 is not a constitutive relation. We shall be concerned
in the first part of the paper with providing data which we believe
demonstrate that Fig. 1 is applicable to impact problems. In fact it is
very applicable, because the dynamic problems have a wide variation in
their response which is thought to be nothing more nor less than the
variation in the tangents of data like that shown in Fig. 1. Because of
the variation in the response of “identical” specimens, we present data
averaged for several tests together with a discussion of the statistical
aspects of the observations. There is a very wide variation in responses
in certain types of impact. In addition to these wave propagation re-
sultsy data on the dynamicelasticsplastic interface are presented.

The second section of the paper reports additional information on
the heat generated as a metal (annealed aluminum) deforms and
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describes our attempts to measure the heat generated in the plastic
range. Said differently we are attempting to obtain data on the energy
equation for annealed aluminum. In this respect we are sometimes
reprimanded because we are looking at something (the change in tem-
perature) which everyone knows is very small —and this is taken to be
synonymous with trivial. We heartily agree on the smallness but not at
all with the triviality of small quantities. In many respects there is an
analogy between temperature in a continuous medium and damping
in a mechanical system. For some phenomena in the mechanical system
one can ignore damping while for others (long time) it is a very im-
portant feature of the problem. Our key point however is that we be-
lieve it is important to the very basis of plasticity to establish explicit
forms for the conservation of energy and this means measuring the
heat generated. Certainly the history of the temperature is approxi-
mately equal to the plastic work and therefore if one considers plastic
work to be important, so is the heat. For static problems these may very
well be interchangeable but from a basic viewpoint the distinction is
believed to be important. Our second point is that in continuum me-
chanical theories of materials in which coupling is possible it makes a
considerable difference whether one puts the temperature equal to
zero before or after certain differentiations have been done.

We close the paper by relating our recent attempts at measuring the
heat generated during impact—that is by combining the two previous
sections.

PLASTIC DEFORMATION WAVES

Experimental Method

Commercially pure aluminum (1100 alloy) tubes which have an 0.50
in. outer diameter and a 0.05625 in. wall thickness are used for all tests
reported in this section. The specimens are annealed at 1100° F for two
hours and furnace cooled which produces a fine grained structure in
the material. The specimen lengths change and some tests use short
soft (annealed) sections glued to long hard (as received) ones.

Strains are measured at several axial stations by means of SR4-A-8
wire resistance gauges attached to the specimen with Post Yield cement.
The changing resistance of the gauge is converted into a suitable
oscilloscope signal by means of an Ellis Associates Model BAM-1
Bridge Amplifier. The oscilloscope uses a Tektronix Type A-74 (four
channels) plug-in unit on the vertical plates. We do not attempt any
measurement of boundary data since we prefer to compare strain
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Fig. 2. Schematic diagram of the system used.

histories at interior points. Such measurements indicate that there is an
alteration in the wave form near the ends of the specimens that dras-
tically alters the internal responsc so that one can be seriously misled
by using boundary data together with approximate theories to predict
the response under other conditions. 'This alteration in wave form is
due in part to three-dimensional effects and in our experimental ar-
rangement also to an impedance mismatch between the steel plunger
and the soft specimen.

A predominantly axial deformation wave is produced by impacting
the end of the aluminum specimen with a steel plunger that is driven by
releasing a compressed spring. The amplitudes of the strains are con-
trolled by adjusting the magnitude of the spring compression. The
specimen is hung from an A frame by long strings and is aligned with
the plunger prior to each test. The system is simple and direct, it one
accepts strain gauges, and can easily be reproduced by anyone inter-
ested in doing so. A schematic diagram of the system used is shown in
Fig. 2.

Experimental Data

Two reports [5, 6] have recently been prepared which contain cer-
tain experimental data which complements that which is presented
here. One of these reports [5] contains a study of a plastic wave im-
pinging on an elastic-plastic interface while the other [6] emphasizes
the wide variation in the response that one observes in specimens
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Fig. 3. Typical strain histories in specimens never previously deformed in the plastic
range when subjected to a reasonably large impact force. Permanent strains are ap-
proximately 1700 uin./in.

thought to be identical. It is hoped that this paper is self-contained but
these references provide a more complete story.

In the first series of tests to be discussed here twelve specimens which
were thought to be identical were subjected to impacts with the spring
compressed the same amount for every test. These tests involved rela-
tively large final plastic deformations (2000 win./in.), but since we are
primarily interested in the response near the yield point; oscilloscope
settings are made for this region rather than to permit one to observe
the final strains. A typical result is shown in Fig. 3 where the strain
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end arrive at x = 14 in. at 270 usec. Interest is confined to times less
than this and the time origin is arbitrary. At the larger values of strain
shown in this figure, the speed of propagation is not too far from being
uniform throughout the region of measurement. For example the time
required for a strain equal to 1020 uin./in. to propagate the two inches
between gauge positions are: 48, 42, 40 and 49 microseconds. However
if one takes another specimen one finds that these numbers are: 47, 56,
47 psec and infinity since the reflected wave arrived at x = 12 in. prior
to 1020 pin./in. Hence one must average the response in Fig. 3 with
several others in order to achieve data that can be meaningfully com-
pared with theoretical results. The next relevant question has to do
with the scatter in the data; how much ot it is really in the material and
how much is in the experimental method? Figure 3 also indicates a
rapid slowing down of the wave near 125 win./in. which is an apparent
yield point. However, closer examination also reveals that, for strains
just above and below this value, the time interval required for a given
value of strain to propagate two inches is very far from being uniform.

Table 1 is a summary of the data obtained from these twelve identical
specimens subjected to identical impacts. These data are obtained from
histories similar to those shown in Fig. 3. Table 1 contains the average
value of the time required to propagate the indicated two inches, the
standard deviation of the data and the maximum positive and negative
deviations from the average. Clearly the data in Table 1 indicate that
strains above 210 uin./in. propagate at sensibly constant speed for the
first ten inches but then something drastic happens. Furthermore, the
standard deviation for the propagation times is almost the same for the
elastic region and for strains of 765 pin./in. This is considered ade-
quate to establish that the present system provides data with less than
5 usec error and probably much less than this for averaged data.
Theretore the rest of the variation in the data near the yield point (say
at 170 uin./in.) is due to variations in the material response. This is believed
to be the dynamic version of the variation indicated in Fig. 1 in which
specimens 457 and 626 have different responses. The nature of the dis-
tribution of the time increments required for a given strain to prop-
agate two inches are shown in Fig. 4 for a small value of the strain and
in Fig. 4a for a larger value. The width of these distributions is about
the same for both strains despite the larger mean time for the higher
value of strain. The data in these large initial impacts will be compared
with other data in a later section. The data in Table 1, especially in the
first ten inches, are uniform and therefore could be consistent with a
strain-rate independent constitutive relation and a smooth stress-
strain curve.
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Table 1

THE TIME INTERVAL, Af, FOR A GIVEN VALUE OF STRAIN, €, TO PROPAGATE

BETWEEN THE DESIGNATED AXIAL LOCATIONS. THE NUMBER OF SPECI-

MENS, 7, THE STANDARD DEVIATION, S.D., THE MAXIMUM POSITIVE

DEVIATION, MAX. POS. DEV. AND THE MAXIMUM NEGATIVE DEVIATION,

MAX. NEG. DEV. THESE SPECIMENS WERE ALL SUBJECTED TO THE PLUNGER

BEING PROPELLED BY THE SAME LARGE SPRING COMPRESSION AND WERE
THOUGHT TO BE IDENTICALLY PREPARED.

x=4—x=6 x=6—x=8 x=8—x=10 x=10—x=12 x=12—x=14

€= 85 pin./in.
At (usec) 10.0 9.6 6.8 9.7 —
n 2 5 6 6 —
S.D. (usec) 0 4.5 3.5 2.1 —
max. pos. dev. (usec) 0 7.4 4.2 3.3 —
max. neg. dev. (usec) 0 6.6 6.8 1.7 —
€= 127 pin./in.
At (usec) 14.8 8.0 6.6 12.1 11.5
n 5 6 7 7 2
S.D. (usec) 4.1 7.0 2.8 9.4 3.5
max. pos. dev. (usec) 6.2 24.0 4.4 20.9 3.5
max. neg. dev. (usec) 4.8 8.0 5.6 12.1 3.5
€= 150 pin./in.
At (usec) 16.8 11.4 6.5 20.0 21.2
n 5 7 6 6 4
S.D. (usec) 6.6 8.8 3.9 14.1 14.0
max. pos. dev. (usec) 8.2 14.6 5.5 23.0 22.8
max. neg. dev. (usec) 8.8 114 6.5 16.0 16.8
€=170 pin./in.
At (usec) 17.6 11.0 9.6 25.5 28.5
n 11 10 10 10 2
S.D.(usec) 10.7 6.7 4.5 21.5 —
max. pos. dev. (usec) 19.4 14.0 5.4 30.5 1.5
max. neg. dev. (usec) 7.6 13.0 9.6 25.5 1.5
€=213 pin./in.
At (usec) 22.7 19.6 22.0 44.2 39.0
n 11 10 10 10 2
S.D. (usec) 89 54 7.0 14.8 —
max. pos. dev. (usec) 14.3 10.4 8.0 21.8 7.0

max. neg. dev. (usec) 11.0 5.6 15.0 30.2 7.0
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Table 1 (Cont.)

x=4—x=6 x=6—x=8 x=8—x=10 x=10—x=12 r=12—x=14

€= 255 puin./in.

At (usec) 27.0 23.1 28.1 46.0 43.0
n 11 10 10 10 2
S.D. (usec) 4.6 6.8 7.4 10.6 —
max. pos. dev. (usec) 8.0 11.9 13.9 16.0 7.0
max. neg. dev. (usec) 10.0 15.1 13.1 19.0 7.0

€= 340 uin./in.

Al (usec) 30.8 31.2 30.7 50.0 10.0
n 11 11 11 11 1
S.D. (usec) 5.2 9.6 5.9 11.2

max. pos. dev. (usec) 7.2 6.8 13.3 32.0

max. neg. dev. (usec) 9.7 15.2 10.7 10.0

€ =425 pin./in.

At (usec) 33.2 32.0 34.3 18.2
n 11 11 11 10

S.D. (usec) 5.0 6.6 4.4 8.8
max. pos. dev. (usec) 5.8 13.0 10.7 93.8
max. neg. dev. (usec) 10.2 12.0 7.3 8.2

€=510 pin./in.

At (usec) 34.8 32.8 36.7 15.6
n 11 11 11 10

S.D. (usec) +.9 6.1 5.7 6.7
max. pos. dev. (usec) 5.2 12.2 9.3 5.4
max. neg. dev. (usec) 9.2 10.8 7.7 12.6

€= 595 pin./in.

At (usec) 37.0 34.2 37.2 48.2
n 12 11 10 10

S.D. (usec) 4.8 6.3 5.7 9.8
max. pos. dev. (usec) 5.0 12.8 9.8 26.8
max. neg. dev. (usec) 11.0 10.2 9.2

€= 680 uin./in.

At (usec) 38.2 35.6 37.7 45.9
n 12 11 0 10

S.D. (usec) 5.0 6.4 7.4 10.9
max. pos. dev. (usec) 6.8 134 13.3 26.1
max. neg. dev. (usec) 10.2 9.4 8.7 16.9

€= 765 pin./in.

At (usec) 40.1 37.2 39.3 49.5
n 12 11 10 9

S.D. (usec) 5.2 6.5 7.1 4.2
max. pos. dev. (usec) 6.9 13.8 14.7 5.5
max. neg. dev. (usec) 10.1 11.2 10.3 7.0
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Table 1a

THE SAME INFORMATION AS IN TABLE | EXCEPT THESE SPECIMENS WERE
SLIGHTLY PLASTICALLY DEFORMED IN A PREVIOUS IMPACT. THE PURPOSE
IS TO VALIDATE THE DATA IN TABLE | FOR THIS SPATIAL INTERVAL.

€ =255 pin./in. €= 340 pin./in. €= 510 win./in.

x=12—x=14

At (usec) 33.0 41.5 44.2
n 4 4 4

S.D. (usec) 16.8 15.5 9.9
max. pos. dev. (usec) 17.0 13.5 9.8
max. neg. dev. (usec) 22.0 26.5 16.2

In order to better establish the validity of the data at distances from
x= 101in. to x = 14 in. data from other specimens is given in Table la.
These other specimens were previously impacted slightly into the
plastic range (i.e., Fig. 5) and then subjected to an impact with the
spring the same compression as the data in Table 1.

x=4in
3001 _oo--a x=6in

x=8in

E l='0|n
N 2004
=
x=12in

j el elastic
=z
=
- 100¢
? 8

]

19 SPECIMEN NO 120-6

]

1

6 !

100 200 300 400
TIME (pu sec)

Fig. 5. Strain histories in specimens never previously deformed in the plastic range
when subjected to a small impact force. Gauges at x = 12 in. and x = 14 in. remain elastic
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Very Small Impacts

The writer has shown [7] that data obtained in large impacts are not
sensitive to the difference between smooth stress-strain relations and a
relation such as that represented by Fig. 1. The wave speeds for ma-
terials with the same averaged curves are approximately the same for
large amplitude waves, but are not for smaller ones. Hence if one
doesn’t know whether the appropriate constitutive relation has con-
tinuous derivatives or not, and one is interested in such questions; it
becomes necessary to do experiments in which the stress is just barely
above one of the plateaus. Clearly this is easy enough to do in static
tests if one has patience and creep can be ignored. In an impact situa-
tion this is more difficult, because of the variation in the location of the
plateaus from specimen to specimen. Hence one does many tests and
expects to observe significant deviations from an average in only a few
of them. Then one is faced with the problem that the exceptional
cases may possibly be regarded as “flukes.” Being interested in this
problem, we initially compress the spring to values just above and just
below where we expect to produce a plastic strain. There really isn’t
any “typical” result for such experiments and moreover one is inter-
ested in the extremes not the “typical” data. However, Fig. 5 is as
“typical” as one can find for these small impact tests. In this particular
experiment the gauges located at x=4, 6, 8 and 10 in. showed per-
manent strains after the test while those at x = 12 and 14 in. indicated
none. The time required for a strain of 170 win./in. to propagate the
inches between gauge locations are: 15, 42, 26, 60 and something in ex-
cess of 80 usec. The time required for a strain of 213 uin./in. to propa-
gate the two inches between gauge positions are: 30, 56 and 98 usec.
Clearly these are not uniform along the bar. The key point is that there
is ample time for a strain of 180 win./in. to propagate to x = 12.0 in. it
the stress-strain curve is smooth and the material is strain-rate inde-
pendent.

To illustrate the variety of responses obtained in these small impacts,
Figs. 6 and 6a are presented for two other specimens. In the specimen
whose response is shown in Fig. 6a gauges located at x = 10 in. and be-
yond remained elastic. The time increments required for a strain of
170 pin./in. to propagate the two inches for specimen No. 136-5 shown
in Fig. 6 are: 30, 7, 28 and 75 usec while in Fig. 6a the time increments
are: 10 and 42 usec. The wide spread in the data for a strain of 170
pin./in. in these small hits is shown in Fig. 7. Of course specimens like
those represented by Figs. 6 and 6a are not included in the down-



Plastic Waves and Heat Generated 33

4004
__ 300t
£
~
& 4
=
=z 200%
< _o--9 x=12in
<« -
- L x=14in
»
100t
!
e —t . : '
0 100 200 300

TIME (u sec)

Fig. 6. Strain histories in specimens never previously deformed in the plastic range
when subjected to a small impact force. The approximate permanent strains are: 280,
150, 200, 160, 75 and 15 pin/in. at x= 4, 6, 8, 10, 12 and 14 in. respectively.

stream positions. The mean time for a strain of 170 uin./in. to propa-
gate two inches in small impacts is 20.1 usec as compared to 12.9 usec
for the large inital impacts. The data for these small initial hits are
summarized in Table 2. It is emphasized that what 1s perhaps the most
significant factor—that of the certain level of strain never reaching 8,
10 or 12 inches—is not adequately reflected in the data in Table 2.

Composite Specimens

In plastcity the solution of boundary value problems involving the
stic response is always interesting.
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Consider the case of a rod which is soft on one end and hard on the
other. Such a situation is created by welding or gluing an annealed sec-
tion to another made of the same material but in a harder state. Besides
being an interesting problem in its own right, this situation is closely
related to the validity of data taken in a “load bar” or in the split
Hopkinson bar experiment. We have developed enough technique of
gluing the two sections together that the elastic wave is the same asin a
continuous specimen. Under impact loadings involving small stresses,
all specimens that are used act as though there wasn’t any junction. Fur-
thermore, gluing two soft sections together yields a specimen just as
good for the plastic waves as a completely soft one having the same
total length, so far as we can determine. What happens when the soft
end of this composite specimen is given a blow which causes it to go
plastic’ With the arrangement just described strains up to the yield
point pass right on through the junction and into the hard part since
both sections have the same impedance. Then the slower plastic por-
tion of the wave arrives at the junction. To this part of the wave the
hard section acts as though it were hard and therefore it reflects, carry-
ing an increased stress back into the soft end. Typical responses for the

40071
E 300+
~
c
= x=6in
j x=4i
= 20071 —or="" 't K8
é x=10in
e { 12 i £ ELASTIC
w

1001

SPECIMEN 82-5
0 + + + +

100 200 300 400
TIME (usec)

Fig. 6a. Strain histories in a specimen never previously deformed in the plastic range
when_subjected to.a small force. The approximate permanent strains are: 170, 85 and
50 pin./in. at x =4, 6 and 8 in. respectively.
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Fig. 7. The distribution function for the time intervals required for a strain of 170
min./in. to propagate two inches in very small impacts such as those represented by Figs.
5, 6 and 6a.

gauges located in the soft section are shown in Fig. 8 for the impact
where the spring is compressed the same amount * as used in obtain-
ing Fig. 3. There is an apparent slight speeding up of the wave be-
tween the last two gauges. However, these data are within the variation
of the raw results used in developing Table 1 and therefore not es-
pecially significant. The significant feature of Fig. 8 is the second wave
that one observes in which the gauge responses have reversed their order.
The first plateau in Fig. 8 is at 1900 win./in. which is very close to the
maximum obtained in the continuous soft specimen of the same total
length. Clearly the second wave is a reflection of the plastic part from
the junction. At other time sensitivities one observes still a third wave
where the gauges return to their original order. This is a reflection
from the plunger face. The strain measured in the hard section is
sometimes used as a measure of the “stress” in the soft section. Typical
data for our experiments are shown in Fig. 9 for the same impact as
illustrated in Fig. 8. One can extrapolate the strain histories observed
in the soft section forward to the junction position and the data in the

* However, this specimen had been subjected to a smaller force which caused some
plastic deformation_prior. to.this test (see Fig. 13).
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Table 2

THE TIME INTERVAL, Af, FOR A GIVEN LEVEL OF STRAIN, €, TO PROPAGATE
BETWEEN THE DESIGNATED AXIAL LOCATIONS. THE NUMBER OF SPECI-
MENS, 7, THE STANDARD DEVIATION, S.D., THE MAXIMUM POSITIVE DE-
VIATION, MAX. POS. DEV., AND THE MAXIMUM NEGATIVE DEVIATION,
MAX. NEG. DEV. OF THE DATA OBTAINED IN HITS WITH VERY SMALL PER-
MANENT STRAINS. AN IMPORTANT FEATURE OF THE DATA, SOME POSITIONS
REMAINING ELASTIC SUCH AS IN FIG. 0A, IS NOT REFLECTED IN THE
TABLE.

x=4—x=6 x=6—x=8 x=8—x=10 x=10—x=12 x=12—x=14

€= 85 uin./in.

At (usec) 11.0 12.9 8.6 8.6 9.0
n 10 8 10 9 3

S.D. (usec) 6.0 7.1 3.9 5.7 1.5
max. pos. dev. (usec) 11.0 16.1 9.4 114 —
max. neg. dev. (usec) 11.0 7.9 4.6 8.6 —

€= 127 pin./in.

At (usec) 11.5 15.6 6.7 10.8 85
n 11 9 10 9 2

S.D. (usec) 9.4 10.7 6.2 10.7 -
max. pos. dev. (usec) 245 20.4 13.3 20.2 —
max. neg. dev. (usec) 16.5 15.6 11.7 10.8 -

€= 170 pin./in.

At (psec) 20.1 24.0 16.3 37.3 —
n 12 12 12 10 -
S.D. (usec) 9.9 15.7 14.3 24.4 -

max. pos. dev. (usec) —
max. neg. dev. (usec) -

€=255 pin./in.
At (usec) 43.5 63.1 37.6 46.0 -
n 11 10 6 3 —
S.D. (usec) 11.8 41.5 19.6 11.3 —
max. pos. dev. (usec) 17.5 91.0 24.4 8.0 —
max. neg. dev. (usec) 18.5 48.1 30.6 16.0 —

€= 240 pin./in.

At (usec) 59.4 57.4 44.0 — .
n 7 5 4 — —
S.D. (usec) 25.8 19.8 23.8 — —
max. pos. dev. (usec) 52.6 38.4 38.0 — —

max. neg. dev. (usec) 27.4 15.4 22.0 — -
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Fig. 8. Actual experimental record for the strain histories in a composite specimen (see
Fig. 9). Each major division is 340 in./in. strain (vertical) and 50 psec in time (horizon-
tal). The'plunger setting is the same as used in producing Fig. 3, but this specimen had
been very slightly deformed in the plastic range on a previous impact.

hard section back to this location; and thereby obtain a “stress-strain”
curve for the material which isn’t too bad. The results of such an opera-
tion are shown in Fig. 9a for the specimen whose response is shown in
Figs. 8 and 9. Also shown in Fig. 9a is a reference curve * which will
be developed below from the data in Table 1 and a particular theory.
The strain shown in Fig. 9 for x = 13.6 in. was translated to the left by
15 psec and then multiplied by Young’s modulus (10.5 X 10 psi) to
give the “stress” at the junction location. Without some prior knowl-
edge of the material it is a difficult thing to know how to extrapolate the
strains in the soft section since there are known to be some reflections
between x = 8.0 in. and the junction. However, the material response is
frequently what is being sought in the test. In constructing Fig. Ya the
strain used was obtained by using the average wave speed between
x= 2.0 and x= 8.0 in. and therefore these reflections were ignored.
However, the logic of how one extrapolates the strains in the soft section
escapes me and I do not recommend this procedure despite its modest

*The difference between these two curves can be viewed as the increase duc to reflec-
tons. It agrees with the predictions [5] of the strain rate independent theory in a general
way. ‘The reference curve is developed later and shown in Fig. 17.
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Fig. 9. The strain histories of points near the junction and in the hard section for the
same impact as shown in Fig. 8.

success. Another point of interest to us is the homogeneity of the final
strains in the soft section. It is very good; typically being within five per-
cent when the hard section is long. Finally, a systematic study [5] of the
strains below 1800 win./in. shows that they propagate in these short ten-
inch soft sections just as though the specimen were a continuous soft
one, provided one stays two inches away from either end.

A rather novel aspect of composite specimens is shown in Fig. 10
where the results of a soft-hard-soft-hard type specimen are shown.
This multi-section specimen was subjected to an initial impact where
the spring was compressed the same amount as used for the test in
Fig. 3. Consider first the time required for a given strain to propagate
between x = 4.0 in. and x = 8.0 in. For this specimen the time required
for a strain of 765 pin./in. to propagate this distance is 98 usec and
therefore greater than the 77.1 usec indicated in Table 1. Probably
this * is greater than the scatter in the data. Thus we have the situation
where a single junction does not affect the propagation of strains which
are below 1800 uin./in. but more than one does. One can show [5] that
this happens in strain-rate independent materials because the length

* This is a better established [5] point than can be obtained from this single specimen.
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Fig. 9a. The stress-strain curve obtained from extrapolations of the data contained
in Fig. 9 compared with one based on wave data (see Fig. 17).

of the hard section in Fig. 10 is less than in Fig. 8. When the wave propa-
gates through the hard section and arrives at the junction with the
second soft one, the stress decreases in value and this reflects back into
the first soft section along a negative characteristic at the elastic bar
velocity and thus penetrates far into the first soft section. Another inter-
esting situation is shown in Fig. 10 where it takes 130 usec for a strain
of 150 win./in. to propagate the four inches from 16.6 in. to 20.6 in.
This is a much longer time than one would expect from the data in
Table 1. In Fig. 10 it can also be seen that there is a plateau in the strain
histories of both hard sections at 192 uin./in. (960 = 5) and that this
ynificant time intervals. Therefore
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Fig. 10. Strain histories in a multi-section composite specimen when the spring is
compressed the same amount as used for Figs. 3 and 8.

we conclude composite specimens are interesting boundary value prob-
lems but not very good for obtaining constitutive data for the material.

We consider now data obtained in smaller initial impacts. One speci-
men consisting of four soft (i.e., annealed) sections glued together has
been tested. The results are shown in Fig. 11. The time required for a
strain of 170 uin./in. to propagate between x = 4.3 in. and x = 11.1 in.
is 80 usec which compares very favorably with the averaged data in
Table 2 for the same positions. Furthermore, subsequent larger impacts
also gave data having very good agreement with averaged results. Thus
we conclude that the plastic parts of the wave are not appreciably
affected by the junctions. Observe however in Fig. 11 that it takes 68
usec for a strain of 170 uin./in. to propagate two inches beyond the
11.1 in. station and this is within a single section. Station x = 19.0 in.
remains at 155 uin./in. for 100 usec before an unloading wave arrives
from the free end and reduces the stress there. There appeared to be
no permanent strain at x = 19.0 in. (or at positions x = 23.0 and x =
30.0 in.) in this impact. Observe also how sharply the data approach
and leave the plateaus. It is also likely that all three downstream sec-
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Fig. 11. Strain histories in a specimen consisting of four soft sections glued together
subjected to a small impact force.

tions yielded at very close to the same value but this is possibly not a
typical result.

Because the specimen whose response is shown in Fig. 11 did not
yield at x = 19.0 in. we have done more extensive testing with a speci-
men consisting of two soft sections glued to a longer hard one. A rea-
sonably typical result for small initial plastic impacts of these specimens
is shown mn Fig. 12. Observe in this figure that there is a slight increase
in the strain from 155 win./in. at 140 wsec to 170 pin./in. at 275 psec.
It is possible that this is due to the plastic wave impinging on the hard
section since this is a slightly harder hit than used in Fig. 11. However,
it is also possibly due to the material, and the increase in stress is just
the value associated with a change from one plateau to another in
Fig. 1. At any rate there is a considerable increase in strain at x = 16.2
in. with only a very modest change in the hard section. Furthermore, it
is not impossible that the speeding up of the plastic wave near a strain
of 300 pin./in. is real.

We consider now data obtained in small initial plastic impacts for the
simplest of the composite specimens. A very typical result is shown in
Fig. 13 for specimen No. 164-14 which is the same one used for the
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Fig. 12. Strain histories in a specimen consisting of two soft sections glued to a single
(long) hard one subjected to a small impact force.

data in Fig. 8. Observe in Fig. 13 the very large (relative) changes in
strain which occur in the soft side of the junction while the strain
(stress) in the hard section remains virtually constant at 155 win./in.
(1450 psi). The key point is that the 155 uin./in. is established in the
hard section at the time when the strain in the soft section is only 235
uin./in. While the strain in the hard section remains constant at a value
of 155 win./in., the soft section continues to deform to 380 win./in. With-
out being firmly committed, an examination of Fig. 1 reveals several
plateaus with approximately this value for the change in strain at con-
stant stress. It is desirable to emphasize that the exact value of the strain
in the plateau in tests like that represented by Fig. 13 varies somewhat,
but in all other respects it is very typical. We have many results which
are virtually identical with Fig. 13.

The response in more complicated multi-section specimens is varied.
One interesting one is shown in Fig. 14 which involves an impact that is
somewhat harder than used for Figs. 11-13 but is less than used to ob-
tain Fig. 10. In Fig. 14, the response for the gauge at x = 25.0 in. is
greater than for the one located atx= 12.5 in. However, the time incre-
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ment for a given level of strain to propagate four inches is much less
between x = 12.5 in. and x = 16.5 in. than it is between x = 25.0 in. and
x = 29.0 in. All of which illustrates that one must be careful in drawing
conclusions from composite specimens of the soft-hard-soft-hard type.

Dynamic Yield Strain

The writer recently presented [6] data on the dynamic yield strain
for the same material used in the present series of tests and indicated
that there was a very wide spread in the data for this parameter. The
definition of the dynamic yield strain used in interpreting the experi-
mental wave propagation data was the slowing down of the wave to a
speed less than the bar velocity. We indicated in our previous report
some of the difficulties we found in deciding which numerical value
should be called the yield strain. Part of the interpretation difficulties
are illustrated by Figs. 3, 5 and 6a of the present paper. In'Fig. 3 there
is a very sharp slowing down at a strain 127 uin./in. and so this value is
used. In Figs. 5 and 6a there is an appreciable slowing down at strains
of 140 and 130 win./in., but part of these specimens remain elastic in
the sense that no permanent strains were observed after the test at
x=12 and 10 in.

In the earlier report every specimen where gauges had been placed
at x =4 and x = 10 inches was used to obtain the statistical variation.
This resulted in an average dynamic yield strain of 173 win./in. with a
standard deviation of 33 uin./in. In this paper we use the opposite ex-
treme and select only “good data.” That is, we use only data where we
are satisfied that there is a sharp decrease in the wave speed, where
bending appears to be very small, where the sensitivity of strain and
time permit accurate measurements and where the overall picture *
just looks good to us. The results are shown in Fig. 15 for eleven very
small and six large impacts which produce plastic deformations in the
initial plastic hit. We use the response histories of the front gauge and
the Jast one on the specimen in this evaluation. Specimens subjected to
a large initial plastic impact (like Fig. 3) indicate an average value of
134 pin./in. with a standard deviation of 8.3 uin./in., while those given
a small blow indicate an average value of 139 uin./in. and a standard
deviation of 16.1 uin./in. for the dynamic yield strain. These data do
not involve any composite specimens and are shown in Fig. 15. These

* Qur technique has also improved so we use smaller size hits in the elastic range in
order to reduce the possibility of causing plastic deformation with a mistake. Further-
moreyit;dependsyonswhere the;measurements are taken. For example in Table 1, 127
pin./in. have a very uneven propagation speed even when averaged results are used.
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Fig. 15. Distribution function for the dynamic vield strain for “good” tests.

values are in better agreement with data reported by other investi-
gators for annealed aluminum than our previous results [6]. While the
difference between the averages of 173 and 139 uin./in. may appear to
some as being large, let me emphasize that the experiment for ascer-
taining the yield point is a very difficult one in dynamic tests unless one
has very long specimens. Even in this case it is also difficult because one
cannot easily obtain long specimens which are homogeneous and
straight. Observe also that in Fig. 5 the level of the plateau is about
170 pin./in. indicating that this might even be a very good alternative
definition for the yield point and lead to a different numerical average.

Discussion

The data presented above are new experimental results which are in-
tended to be reliable evidence but as free of interpretation as possible.
This section will contain the interpretation and quite a lot of personal
bias on the nature of inelastic behavior and in particular as applied to
annealed aluminum. The major points which it is believed that the data
given above establish are:

(T heredissarealrelatively Jarge variation in the response (both
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static and dynamic) of annealed aluminum near the yield point (Figs.
1, 4 and 7). By response we especially mean the tangent of the stress-
strain curve at a given stress, as contrasted with the curve itself.

(2) There is a reflection from the junction between a hard and soft
section if the stress is above the yield point. The final deformations in
specimens containing a single junction, such as the one used for Fig. 8,
are of the order of 1% times those which are developed in a continuous
soft one. The lengths of the soft and hard sections in the composite
specimen are relevant to this increase.

(3) There is a large amount of plastic straining which occurs in com-
posite specimens which is not observed as a corresponding increase in
stress in the hard section (Fig. 13).

(4) It is as reasonable to say that annealed aluminum is strain-rate
independent in large impacts as it is to give it any other description
since strains above 200 uin./in. propagate at a uniform speed, at least
for the first ten inches (Table 1).

(5) Larger impacts cause a given level of strain to propagate faster
(compare Tables 1 and 2) than smaller ones. The wave speeds obtained
by averaging all the data for large impacts between x = 4 and x = 12 in.
and for the small hits between x = 4 and x = 14 in. are shown in Fig. 16.

(6) There is a reasonably good chance of being able to initiate a small
plastic deformation wave which propagates more or less normally for
some distance, and then suddenly stops or slows down very drastically
(Figs. 5 and 11 as well as a previous paper [6]).

If one now assumes the strain-rate independent bar theory of Kar-
man, Taylor and Rakhmatulin and that there exists some smooth stress-
strain relation which governs the propagation of plastic deformation
waves, then one deduces that this relation is given by

€
0—=f pct de
0

where o, €, p and c(€) are the stress, strain, mass density and wave speed
expressed as a function of strain, respectively. One should use this rela-
tion to obtain the governing stress-strain relation only after it has been
demonstrated that the wave speed is indeed uniform down the bar. We
have used the totality of our averaged experimental wave speed data
for each of the very small impacts and the large ones. The results are
shown in Fig. 17 where these derived curves are compared with two
static compressive stress-strain relations taken from the literature
[8, 9]. Recalling the scatter in the static data (Fig. 1) and in the dynamic
results (Tables 1 and 2); the writer concludes from Fig. 17.that one
mightyjustyaspwellyusesthesstrain=rate independent theory with a smooth
stress-strain curve as any other he knows about, if one has to predict the
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Fig. 16. Average speed of propagation between x=4 in. and x= 12 (or x= 14 in.)
tor large (and small) initial impacts.

deformations in an untested structure of annealed aluminum. How-
ever, there is considerable evidence which points out that one must also
recognize that such a prediction can be very much in error. More im-
portantly one must be extremely cautious about looking too closely at
detailed results of a single experiment and drawing far reaching con-
clusions. If one subjects an untested structure to a large impact load-
ing, the experimental results will agree “reasonably” well with the pre-
dictions. This includes the reflections from the junction of a composite
specimen as can be seen by comparing Fig. 9a with the theoretical result

'y of plastic wave propagation as
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Fig. 17. A comparison of stress-strain relations in compression as obtained by two
investigators [8, 9] in a static test and in the large and small impacts. The dynamic data
is based on the strain-rate independent theory of wave propagation.

commonly used is known to be inadequate for problems involving incre-
mental loading. Among the results which must be made consistent with
its applicability to the large impacts are:

(1) The speed of propagation of incremental waves in a prestressed
region being of the order of magnitude of the bar velocity [8].

(2) The stopping or sudden slowing down of waves as illustrated by
Figs. 11 and 13.

(3) The existence [7] of slow waves such as illustrated in Fig. 18a
where the specimen was prestressed to 4300 psi in torsion and sub-
jected to an increment of 3.6 psi in stress. The wave speed is 0.45 in./
ith the actual development of the
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(4) A pulse of 20 milli-second duration can produce 800 win./in. of
plastic strain at one point in a specimen while a gauge located 1.5 in.
away remains clastic. Figure 18b is an illustration [10] of this situation
in which a prestressed specimen is subjected to an additional loading
pulse of 20 milli-second duration. ‘The prestressing is gradually in-
creased by small amounts interlaced with numerous applications of the
pulse type loading. Under these conditions one obtains elastic response
data for most pulse applications, but occasionally results like Fig. 18b
are observed.

(5) Static bending, torsion of a solid rod, tension, compression and
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Fig. 18. A slow wave (a) which is simply onc of the plateaus in Fig. 1 developing and
(b) the response due (o impacting in torsion with a pulse of 20 multi-sec duration.
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biaxial states [9] of stress all produce load deflection curves such as
Fig. 1 in the case of slow loading.

Thus there is a wide variety of data both static and dynamic which
can be made consistent by the concept that annealed aluminum is mechani-
cally unstable. That is, large increments of strain are produced by very
small changes in stress—at certain discrete stresses. Furthermore, the
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Fig. 19. A schematic solution of a boundary value problem of the Instron machine
with an unstable specimen. The key point is that there is an “unloading” when the in-
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results found in slow Instron tests can also be made consistent with
these other results if one considers the distributed elasticity of the ma-
chine and views the problem as one in dynamics. I will rephrase one of
the statements made above: if one assumes that a serrated constitutive
relation applies to a given material, a static test is almost impossible, all
tests are dynamic and involve wave propagation. An Instron type test is
illustrated in Fig. 19 where the testing machine is regarded as a hard
rod in contact with the soft specimen (clearly the specimen is soft when
it is unstable). The load is applied until the stress is one half the yield
stress of the specimen; upon reflection this doubles and the specimen
reaches the vield point. A small time later an increment of load A is
added which propagates through the machine to the interface. At the
interface, the specimen is virtually a free end with respect to increments
and there is an unloading in the hard bar and a slowly propagating wave
in the specimen. The unloading reflects back to the crosshead position
and something else happens. The unloading can be significant, even if
the material isn’t unstable, but in that case the whole thing happens so
tast that one establishes homogeneous straining on the scale used to
make the observations. However, when the material is unstable 1t takes
a very long time from the instant when the load is applied until the
specimen finally becomes homogeneously strained. It once took more
than twenty minutes. One can see that one cannot approximate the re-
sults in Fig. 19 with a quasi-static analysis.

The stopping of the waves in the small hits (Figs. 11 and 13) and the
slowing down in the large ones (Tables 1 and 1a) between x = 10 and
x =12 in. is believed to require additional consideration of the state
of stress or the use of a more sophisticated material description.

There are many metallurgical explanations of this phenomenon, the
problem is to sort out which mechanism actually is operative. The main
difficulty in applying the concept of unstable materials is that it is
wonderful hindsight but lacks predictive value until one can establish
precisely when the instabilities will develop. Attempts in this direction
have been made [11, 12], but the writer is not completely happy with
them because equilibrium conditions are far from existing in the re-
lated experiments, and yet it is necessary to assume that they do to ob-
tain useful data. On the other hand he doesn’t have anything better to
offer except the philosophy that the response is in fact a statistical one
in the plastic range and the expected value of the wave speed ranges
from practically zero to virtually infinity. Furthermore, despite the fact
that I tend to prefer the strain-rate independent theory for annealed
aluminum structures, I suspect that strain-rates are important param-
eters in the details of the plateaus and how they propagate. That is to
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say that some dislocation mechanisms are relevant to the plateaus and
to the “structure” of the wave and these may very well be strain-rate
sensitive. However, standard strain-rate models do not apply to an-
nealed aluminum because certain discrete stresses have responses
which are very different than their neighbors.

HEAT GENERATION
Experimental Method

In order to study the heat generated and its relation to the mechani-
cal work done on the specimen as metals deform in the plastic range; it
is necessary to produce a homogeneous deformation in which the
stress, strain and temperature can be simultaneously measured. In
previous papers [2, 3] we have given data on the heat generated as
annealed aluminum and annealed copper are deformed. The experi-
mental technique has also been discussed [13] for the case of coupled
thermoelasticity. Basically we twist a tube in torsion, slow enough that
we hope mechanical equilibrium conditions are approximately realized
but fast enough that heat conduction is negligible. Of course neither
situation is fully obtained but one hopes that the error committed is not
important. In our system the torque that is being applied to the speci-
men is measured by a strain gauge on the load bar, strain is measured
at two interior points by means of SR4-A-8 wire gauges and tempera-
ture is measured by a fine wire thermocouple. It is necessary to meas-
ure strain at two points because some specimens deform nonhomoge-
neously and these are not suitable for constitutive data. The thermo-
couple wires are held in contact with the specimen by standard
electrical tape. The changing resistance of the strain gauges is made
into a suitable oscilloscope signal by means of the Ellis Associates Model
BAM-1 Bridge Amplifier. The torque is converted into average applied
stress by means of strength of materials formula for thin walled tubes.
The copper-constantan thermocouple output is changed into a meas-
urable voltage * by means of an Astrodata Model 120 Nanovolt
Amplifier with a gain of 50,000. The electrical outputs are observed on
an oscilloscope with a four channel plug-in and recorded with an
oscilloscope camera. The only modification of the basic method since
our papers [3, 13] is the use of an additional oscilloscope in which one
of the strains drives the horizontal plates and the stress and tempera-
ture are connected to the vertical ones. Thus we obtain the hysteresis

* One of our favorite tricks for visitors in the laboratory is to adjust electrical gains so
thatthe temperature exceeds;the strainjonsthe oscilloscope. We then ask “how can this be
so trivial?”
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loop directly without the cumbersome procedure of eliminating the
time parameter.

All specimens used in this heat generation section have a .25 in.
outer diameter, a wall thickness of 0.031 in. and are 8.5 in. long. They
are annealed the same way as the larger specimens used above. They
arc obtained from a different supplier and are made by a drawing
process which yields a structure having larger grains than the 0.50 in.
diamcter tubes.

The specimen is initially centered in the torsion apparatus and then
twisted between equal values of the angular displacement of one end.
The other end is fixed against rotation but free to move axially. A
typical experimental record is shown in Fig. 20. This particular record
is for a specimen previously deformed for a few cycles. The top part of
Fig. 20 contains the hysteresis loop and the temperature —strain rela-
tion. The initial condition in the fully annealed specimen is at the
center of the top photograph.

In the bottom photo, the top trace is “stress” (actually torque), the
middle two traces are the strains at two points while the lower trace is
the temperature. The two strain traces differ because the gains of their
clectrical systems are unequal.

Experimental Data

In Fig. 20 one can observe that there are plateaus in the temperature
history which occur when the specimen “unloads” indicating that the
material 1s indeed elastic at these times. If cooling is important the tem-
perature decreases during the times corresponding to the plateaus in
Fig. 20. The most significant point 1s a near perfect balance between
the work represented by the area of the hysteresis loops and the heat
generated. That is to say that the plastic work per cycle is almost equal
to heat generated per cycle. This is especially true after the third cycle
from the fully annealed state. Typical results for a case where the total
strain is 0.0100 in./in. (£0.0050 in./in.) are

Plastic work = 32.5 in.-lb/cu in.
Hecat generated = 30.6 in.-Ib/cu in.

Thus the heat generated is 94% of the work required to deform the
specimen.

We have tested several specimens at amplitudes of 0.0075 in./in.
and others at =0.0050 in./in. In group 1 we oscillate three cycles at
000 75minyinnrthenmthreemmorey cycles at 0.0050 in./in., back to
+0.0075 m./in. and then oscillate (for about fifty cycles at =0.0075
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in./in. Group II is tested in the reverse order; i.e., three cycles at
#0.0050 in./in., then three more at 0.0075 in./in., back to 0.0050 in./in.
and then finally fifty cycles at =0.0075 in./in. The specimens are al-
lowed to reach thermal equilibrium between each of the series listed
above. The results are listed in Table 3. The program for Group III
is the same as Group II except the fifty cycles are run at an amplitude
of £0.0050 in./in. and then the amplitude changed to =0.0075 in./in.

Table 3

THE AVERAGE TEMPERATURE INCREASE PER CYCLE (°F) AFTER THE
STRAINING PROGRAM DESCRIBED IN THE TEXT.

Grour 1
Average temperature rise in the first cycle 0.102° F
Average temperature rise in the third cycle 0.129° F
Average temperature rise in the first cycle at
=+0.0050 in./in. 0.072° F
Average temperature rise/cycle upon returning to
+0.0075 in./in. 0.133° F
Average temperature rise/cvcle after 50 cvcles at
=+0.0075 in./in. 0.137° F
Average temperature rise/cycle at +0.0050 in./in.
after 50 cycles at 20.0075 in./in. 0.083° F
Grour 11
Average temperature rise in the first cycle 0.055° F
Average temperature rise in the third cycle 0.062° F
Average temperature rise in the first cycle at
+0.0075 in./in. 0.127° F
Average temperature rise/cycle upon returning to
+0.0050 in./in. 0.074° F
Average temperature rise/cycle after 50 cycles at
+0.0075 in./in. 0.132° F
Grour 111
Average temperature rise/cycle after 50 cycles at
=0.0050 in./in. and then oscillating at =0.0050 0.082° F
Average temperature rise/cycle after 50 cycles at
*0.0050 in./in. and then oscillating at +0.0075 0.150° F

A study of the data in Table 3 results in the conclusion that the tem-
perature rise (after the first two cycles) is related to the present ampli-
tuderather than the previous,one. That is there is a sort of inde-
pendence of path for the heat generated per cycle for the range of
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strains used in this study. Except for the first two cycles from the fully
annealed state, we could find no significant change in the percent of the
mechanical work that appeared as heat. It is always between 95% and
100%. The magnitude of the experimental error is estimated to be five
percent.

Coupled Thermoplasticity

The Coleman-Noll approach to the thermodynamics of deformable
bodies has recently permitted [14] an analytical description of ma-
terials which are possible prototypes for plastically deforming solids.
That is, we attempt to provide an answer to the question: “In a com-
pletely analytical world how does one describe plastically deforming
solids?” We illustrate how their approach works for the case of a body
B in which acts only a single shearing stress 7 and where all quantities
are functions of a single spatial coordinate, X, and time, ¢. A thermody-
namic process is described by the deformation function (strain), the
free energy per unit mass ¢, the heat flux vector ¢, the hydrostatic
stress o, the temperature 6, and the heat supply per unit mass per unit
time r. For simplicity we shall limit to deformations where the gradient
of the deformation function is equivalent to the small strain tensor.
Under the present restrictions, the energy equation and the second law
are

Pop = 00 + 76 — pobs — pobs — 3q/dX + por
and
pos 1 3(q/0)/3X + per/6 = 0

where v is the dilatation, ¢ is the shearing strain conjugate to 7, p, is the
undeformed material density, and superposed dots indicate partial
differentiation with respect to time.

Because plastic materials do not have a unique constitutive relation
we do not impose that condition in their analytical definition. Rather
the parameters which are functions of space and time are regarded as
many-valued functions of the dilatation, temperature, shearing stress
and shearing strain acting as intermediate variables. Thus the free
energy is

X, )= (v, 0, 7, €)

and similarly for all the other parameters except the heat flux vector
which contains the temperature gradient as well. The inclusion of 7 in
this_relation distinguishes plastic_substances from nonlinearly elastic
ones. We define a prototype plastic material as a plastic material where the



Plastic Waves and Heat Generated 57

shearing stress is given by

7= po(dd/de) + 2upe(dd/aT)

which is used largely for convenience. By considering certain special
processes, the balance laws are trivially satisfied but the second law is
not. For example when the temperature rates can change but the
stresses and strains are held constant, the second law becomes

671 po(s + db/a0)8 = 0.

Since 6 can be of either sign the term in parentheses must vanish and
we have the general result that

s+ dd/90 = 0.
Similarly one finds that
ag = poﬁd)/av.

These two results are introduced into the second law and combined
with the constitutive relation for the prototype plastic material with the
result that

O/IT)(é — 7/2um) = 0.

Therefore, if d¢/d7 is not zero on loading — and since it does not change
value with the rates - the material must unload as a linearly elastic ma-
terial. Thus we deduce the result that a specimen made of a material
that does not involve history effects can load according to one stress-
strain relation and must unload via another; this is the distinguishing
tfeature of plasticity. Of course the constitutive relation for the proto-
type plastic material is obviously not the only one which will lead to the
unique aspects of plasticity nor is it obviously applicable to any real ma-
terial.

If one incorporates the results given above into the energy equation,
one obtains

—3q/9x = poeCpf — por — PoB(2P/300V)T — pyB(7/36)é
— 2u(3*p/dTd0)e — (0°d/000T)T — 2upedd/IT(é — T/2)

where Cj, is the specific heat at constant strain. In our experiments v is
approximately zero and so are dg/dx and r. Thus the energy equation
reduces to

0= pyCpf — 2upe(9b/I7)(é — 7/2) — poB(dT/30)é
— 2u(3*Pp/0Td0)e — (92h/I0IT)T.

The experimental results for annealed aluminum given above for the
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heat generated can be made approximately consistent with this result
by equating

2upo(dd/oT) =1
and
a7/80 = 9*¢p/dT6 = 0.

Finally we illustrate the general results with a specific example. Con-
sider a material whose free energy is

3 ,
b = 7/2up, — 4Be¢”/3p, — Cpt?/2.
Then the prototype constitutive relation reduces to
T= Bellz

and of course
Ap/dT = T/2upy.
Hence in this example the second law becomes
T —7/2u) > 0

which is just the condition of positive plastic work. Hence the main
features of plasticity theory are completely consistent with the proto-
type constitutive relation and annealed aluminum is a real material
which is very closely approximated by the results. An essential feature
of the unified picture thus obtained is the experimental data on the
amount of heat generated in the deformation. It could not have been
obtained if the experiment was approximated as an isothermal one
even though the temperature changes only by 0.1° F. I find it also com-
forting to explicitly examine the conservation of energy principle and
to be consistent with it. For static work it is unlikely there is any ad-
vantage to the coupling with the thermal field but for dynamic tests
this may not be the case.

Rapid Deformation Data

We have recently been attempting to combine the two previous
phases of our work by measuring the heat generated under the im-
pact conditions. One soon finds that the heat generated in a uniform
long specimen is appreciably smaller than expected. Presumably the
heat is rapidly conducted to those sections of the specimen which are
not strained as much as the impact end. For this reason we have
changed to the composite specimens where the strain is more uniform
and where the glue acts as a thermal insulator between the hard and
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soft sections. So far our technique does not lead to reproducible re-
sults of the type suitable for publication. However, we do measure
reasonable temperature histories and hopefully can soon provide data
on how fast plastic deformations become permanent. In the impact
studies one must also include the change in volume due to the elastic
part of the deformation rather than regarding the plastic work as the
only source term.

In conclusion we have here implied the use of a smooth stress-strain
relation in the heat generation part of the paper while in the first sec-
tion we insisted that it was discontinuous. We also used load bar type
data to obtain stress, a practice we criticized others for doing. Ob-
viously our point is to use the best data that one has available for a
given purpose. If adequate instruments and apparatus were available
we would like to examine the hysteresis loops and temperature
generated into more detail to see if the latter comes in bursts (at a
point) as one might expect from Fig. 1. In our own view we have here
done the best we could and we would reiterate comments in a recent
paper by Pipkin [15] in which “second order approximations lead to
inconsistencies more easily than first order approximations do.”
Clearly this view is at least as applicable to plasticity as it is to visco-
elasticity which Pipkin was considering.
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ABSTRACT

The aim of the present paper is to discuss the thermodynamic approach to combined
treatment of rheologic and plastic phenomena and to construct a thermodynamic theory
of non-linear viscoplastic materials which mayv be used to describe the behavior of metals
under dynamic loads.

In the first part of this paper the discussion is given of three different thermodynamic
approaches to continuous media. It is shown that the thermodynamic foundations of
viscoplasticity may be considered within the framework of the continuum mechanics of
materials with memory. A non-lincar material with memory is defined by a system of con-
stitutive equations in which some state functions such as the stress tensor, the internal
energy, the heat flux, etc., are determined as functionals of a function which represents
the time history of the local configuration of a material particle.

As a result of simultaneous introduction of elastic, viscous and plastic properties of a
material, a description of the actual state functions involves the history of the local con-
figuration expressed as a function of the time and of the path.

The restrictions which impose the second law of thermodynamics and the principle of
material objectivity have been analvzed.

In the second part of this paper some particular cases of constitutive equations are dis-
cussed. Among others, a viscoplastic material of the rate type and a strain-rate sensitive
plastic material are examined.

INTRODUCTION

In agreement with J. Meixner’s well founded opinion [1] three dif-
ferent approaches to a thermodynamic theory of continuum can be
distinguished. These approaches differ from each other by the funda-
mental postulates, on which the theory is based. All of them are charac-
terized by the same fundamental requirement that the results should
be obtained without having recourse to statistical or kinetic theories.
None of these approaches is concerned with the atomic structure of the

61



62 Piotr Perzyna

material. Therefore, they represent a pure phenomenological ap-
proach.

The principal postulates of the first approach, initiated by Onsager’s
works and usually called the classical thermodynamics of irreversible
processes, are as follows (cf. S. R. De Groot and P. Mazur [2]). 1) The
principle of local state is assumed to be valid. 2) The Gibbs’ relation is
satisfied. 3) The equation of entropy balance is assumed to involve a
term expressing the entropy production which can be represented as a
sum of products of fluxes and forces. This term is zero for a state of
equilibrium and positive for an irreversible process. 4) The fluxes are
function of forces, not necessarily linear. However, the Onsager-Cas-
mir reciprocity relations concern only coefficients of the linear terms of
the series expansions. Using methods of this approach, a thermody-
namic description of elastic, rheologic and plastic materials was ob-
tained. Let us mention the works by M. A. Biot [3], D. C. Drucker [4],
H. Ziegler [56-14], A. A. Vakulenko [15, 16], A. E. Green and J. E.
Adkins [17], O. W. Dillon [18], G. A. Kluitenberg [19-25], S. L. Koh
and A. C. Eringen [26], ]. Kestin [27] and J. F. Besseling [28].

The second approach, called the thermodynamic theory of materials
with memory, was initiated by the work of B. D. Coleman and W.
Noll [29]. The fundamental postulates of this approach are as follows:
1) The temperature and entropy functions are assumed to exist for
non-equilibrium states. 2) The principal restriction imposed on the
constitutive equations is the Clausius-Duhem inequality. 3) The notion
of the thermodynamic state is modified by assuming that the state of a
given particle at time ¢ is characterized, in general, by the time history
of the local configuration of that particle. It should be emphasized,
however, that in particular cases the history of the local configuration
of a particle can be determined by giving the actual values of this con-
figuration and its time derivatives [30]. 4) No limitations are introduced
for the processes considered. The constitutive equations are in general
nonlinear. Within the framework of this approach, thermodynamic
foundations of rheologic materials were established {31-34]. The same
was done for plastic materials also [35-37].

The third approach has been developed by J. Meixner [38-40] and
is called the thermodynamic theory of passive systems. It is based on
the following postulates: 1) The introduction of the notion of entropy
is avoided for non-equilibrium states and the principle of local state is
not assumed. 2) The Clausius-Duhem inequality is replaced by an in-
equality expressing the fundamental property of passivity. This in-
equality follows from the second law of thermodynamics and the
condition of thermodynamic stability. Further the inequality is known
to have sense only for states of equilibrium. 3) The temperature is
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assumed to exist for non-equilibrium states. 4) As a consequence of
the fundamental inequality the class of processes under consideration
is limited to processes in which deviations from the equilibrium condi-
tions arc small. This enables full linearization of the constitutive equa-
tions. An important feature of this approach is the clear physical inter-
pretation of all the quantities introduced.

Each of the three approaches above has its weaknesses and none is
commonly accepted.* The first is subject to excessive limitations in the
form of the assumptions of the Onsager-Casmir relations. Its present
development does not appear to be promising for the overcoming of
the difhculties that are encountered in nonlinear mechanics.¥ The
second approach is criticized principally from the point of view of
physical foundations [1]. Indeed, we must agree with the opinion, that
the problem of physical interpretation of quantities such as the tem-
perature or entropy has not found a detailed treatment within the
framework of this approach. The advantages of the first approach are
the mathematical foundations which are very well developed and offer
a possibility of analysis of many interesting processes. They can also
be used for the description of nonlinear materials. It is also worth men-
tioning that the theories of elastic and viscoelastic materials can be
obtained as particular cases of the theory of materials with memory
[31, 32]. This theory enables the description of many important me-
chanical phenomena, such as elastic instability and phenomena ac-
companying wave propagation [41]. The applicability of the methods
of the third approach is, on the other hand, limited to linear problems.
It does not seem likely that further generalization to nonlinear prob-
lems is possible within the framework of the assumptions of this ap-
proach. The results obtained concern problems of linear viscoelasticity
only [38-40, 43].

It is worth mentioning that recent works concerned with axiomatic
foundations of continuum thermodynamics have shown in a clear
manner the correctness of the conception of the second approach.i
Although they have not removed the objections against the physical
foundations of the theory, they have formulated in a mathematically
accurate manner the applicability conditions of the methods of ra-
tional thermodynamics.

#This fact was pointed out by a detailed discussion at the IUTAM Symposium on Ir-
reversible Aspects of Continuum Mechanics in Vienna, June 1966 [1, 41].

+ A detailed critical analysis of this approach can be found in the monograph of C.
Truesdell and R. Toupin [42].

t The axiomatic foundations of continuum thermodynamics have been presented in
the papers by M. E. Gurtin and W. O. Williams [44, 45]. They are a generalization to
thermodynamics.problems.of the earlier.conceptions of W. Noll [46, 47] concerning the
purely mechanical theory of a continuum.
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The aim of the present paper is to discuss the thermodynamic foun-
dations of the theory of viscoplasticity, the essential feature of which is
the simultaneous description of rheologic and plastic effects of a ma-
terial. The necessity of simultaneous consideration of viscoelastic and
plastic properties of a material is indicated by the results of experi-
mental investigations of dynamic loads. These investigations show
clearly that during dynamic loading of a test piece the plastic and visco-
elastic effects are coupled and play roles of equal importance.* The
viscous properties of the material introduce a time dependence of the
states of stress and strain. The plastic properties, on the other hand,
make these states depend on the deformation path. Different results
will be obtained for different deformation paths and for different time
durations of the process.

It appears that by investigating thermodynamic processes in visco-
plastic materials, characterized by a nonlinearity resulting from de-
pendence on the time and the path, their description can be obtained
within the assumptions of the second approach. We shall try to show
that the methods of thermodynamics of materials with memory can be
used for the establishment of the thermodynamic foundations of visco-
plasticity.

It will be proposed to describe a viscoplastic material as a material
with memory, for which the history of the local configuration depends
on the time as well as the path. Viscoplastic materials of the rate type,
for which the path-dependency is characterized by different sets of con-
stitutive equations, for the loading and unloading process, will be dis-
cussed in more detail. As a particular case of an elastic-viscoplastic ma-
terial of the rate type, a rate sensitive plastic material will be discussed.

Finite deformations of a body during the general thermodynamic
process will be considered. All the constitutive equations obtained will
be invariant under a change of the reference frame.

PRELIMINARY CONSIDERATIONS

In general we shall use a similar notation as in monograph of C.
Truesdell and W. Noll [33]. The motion of the body B with points X is
described by the equation

x=x(X, 1) (1)

where x denotes the spatial position occupied by the material point X at
time ¢.T The gradient F of x with respect to X, i.e.,

* A discussion of the results of experimental investigations in the domain of dynamic
loads acting on metals can be found in the paper [48].
+ We identify the material point X with its position X in the reference configuration.
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E=oxX, t)/oX 2)

is the deformation gradient at the points X relative to the reference
configuration. Itis assumed that det F # 0. By the polar decomposition
of F, viz.,

F=RU 3)

we define the orthogonal rotational tensor R and positive definite and
symmetric right stretch tensor . Similarly, the relation

C=rr=0° (4)

where F” denotes the transpose of F, defines the right Cauchy-Green
tensor.

If F is replaced by the relative deformation gradient F,, then the no-
tations Ry, Uy and (g, are used respectively for the corresponding
relative rotation tensor, relative stretch tensor, and relative Cauchy-
Green tensor. The expressions W () = R, (t) and D(t) = Uy () define
the spin and the stretching tensor, respectively.

Let us denote the Cauchy stress tensor by 7(t). We shall introduce,
after W. Noll [46], the following co-rotational stress rate:

T=T-wr+1W )

where ¥ denotes spin.

A thermodynamic process in B is described by eight functions
{x-T.b.e.n. 9. ¢, r} of X and time . The values of these functions have
the following physical interpretation [29]. The function x(X, t) de-
scribes the motion of the body B and is called the deformation func-
tion: T(X, ¢) is the symmetric stress tensor; p(X, t) is the body force per
unit mass; €(X, {) denotes specific internal energy per unit mass; n(X, t)
the specific entropy and d(X, ¢) is the local absolute temperature;
q(X, t) is the heat flux vector and r(X, ¢) the heat supply per unit mass
and unit time.

The set of eight functions {x, T, &, €, m, ¥, ¢, r} is called a thermody-
namic process if, and only if, it is compatible with the condition for the
balance of linear momentum (Cauchy’s first law of motion) *

div T — px = —pb (6)
and the law of balance of energy (the first law of thermodynamics)
0ATLY — div g = pé =—pr (7)

where p denotes the mass density, L = dx/dx and the trace operator is
denoted by #r.

i“Gauchy'sesecondslawsofsmoetionsrequites 7= T, which we assumed in advance.
Couple stresses and body couples are assumed to be absent.
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In order to define a thermodynamic process, it suffices to prescribe
the six functions {X, T,e,7m, 79, q} The two remaining functions  and
r are then uniquely determined by (6) and (7).

Two thermodynamic processes {x, T, €, 1, ¥, ¢} and {x*, T*, €*, n*,
9%, ¢*} are equivalent if they are relgted only by a~change of a reference
frame.

We assume that all constitutive equations describing the physical
properties of the material satisfy the following principle of material
frame-indifference [46, 33]: If process {x, T, €, 1, ¥, ¢} is compatible
with a system of constitutive equations, then all procegses {x*, T*, e*,
n*, 9%, ¢*} equivalent to it must be compatible with the same~system of
constitutive equations.

A thermodynamic process in B, compatible with the constitutive
equations at each point X of B and for all time ¢, will be called an ad-
missible process in B.

Thus, the principle of material frame-indifference states, that if a
thermodynamic process {x, T, €, m, &, ¢} is admissible in B, then also all
thermodynamic processesN{x*, T%, €%, ;;x 9%, ¢*} must be admissible in
B. The physical meaning of this principle is simply that the material
properties of a body should not depend on the observer, irrespective
of how he moves.

We assume the following postulate: For every admissible thermody-
namic process in a body B the production of entropy must be non-
negative.

Under suitable smoothness assumptions we can write

—lll+ tT{F ITF} — 7)19—— q-gradd =0 (8)

where ¢ = € — 97 is the specific free energy function. This is a local
form of the Clausius-Duhem inequality which is a mathematical state-
ment of the second law of thermodynamics.*

TIME AND PATH DEPENDENT MATERIALS

The non-linear material with memory is defined by a system of con-
stitutive equations [31-33, 49]

H@y= Z_ (¥) 9)

in which II(¢) represents the actual values of some state functions such
as the stress tensor T, the specific free energy ¥, the heat flux g and the

 Fop-the-discussion-of-the-conditions-under which a local form of the Clausius-Duhem
inequality [8] is valid see M. E. Gurtin and W. O. Williams [45].
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specific entropy 7, is a function which represents the history of the local
configuration of a material. It is assumed that the history of the local
configuration W(r) can be characterized by the history of the local de-
formation gradient F(r) with 7 € (—=, t]; the history of the local tem-
perature 9(r) with 7 € (—=, (], and the local temperature gradient,
grad ¢.* Thus we have

@6y = {1(®). ¥(0). g(). n(1)} (10)
V() = {£(r). )r). grad d(O)}. 7 € (=, ¢]. (11)

The response of the material is characterized by the functional &,
called the constitutive functional. The functional # must satisfy an in-
variance requirement relative to a change of the observer, some re-
quirements of the symmetry and special smoothness requirements
[31-32].

We shall now concern ourselves with simultaneous description ot the
elastic, rheologic and plastic properties of a material. To this end, let
us accuratelv define the meaning of the plastic behavior of a material.
Unloading is an important feature which distinguishes the behavior
of a plastic material from that of a nonlinear material with memory.
We shall introduce the distinction between unloading, neutral state,
and loading phenomena.

In inviscid plasticity, it is assumed that the material deforms elasti-
cally until the state of what is called an initial yield surface or the load-
ing surface is reached. Unloading, neutral state and loading in this
theory are defined as follows [35]. An unloading process has taken
place if the deformation from an existing elastic-plastic state takes place
elastically so that the stress point lies inside the yield surface. Neutral
state has taken place if no additional plastic strain is produced when the
stress point lies on the yield surface. Similarly a loading process has
taken place, if due to additional deformation the stress point reaches a
subsequent yield surface.

The determination of the yield condition for a nonlinear material
with memory at finite deformations is very difficult and has not yet
been achieved. Thus, in the formulation of the general constitutive
equations of an elastic-viscoplastic material, we do not use the yield con-
dition. We shall assume that the material of a body B will show plastic
effects from the inital configuration Xto: This initial configuration Xto
will be called the configuration of yielding.

Thus, as a result of simultaneous consideration of rheologic and
plastic properties of a material a description of the actual state func-
tions involves the history of the local configuration expressed as a func-

* Different assumptions have been discussed by M. E. Gurtin [50].



68 Piotr Perzyna

tion of time and of path. To make this idea clear, let us introduce the
definition of path in the ten-dimensional space of deformation and
temperature as follows *

s(r) = f_w [tr(FET) + 9212 dr'. (12)

We shall introduce the history of the local configuration Z(r, 5) in the
following form

B(r, s)={¥(1), s}, 7 € (<, t],s € [0, s@)]. (13)

The constitutive equations for time and path dependent material
can be defined by the system of the form

I1¢) = g(B(r, ), 7 € (—=, t], s € [0, s(®)]. (14)

ELASTIC-VISCOPLASTIC MATERIAL OF THE RATE TYPE

Unloading from an elastic-viscoplastic state follows a path in the de-
formation and temperature space different from that of loading. We
assume the following definition.

A thermodynamic process represents unloading if the condition

%"{w <0 (15)

is satisfied, i.e., if the rate of work of the generalized stress is negative.
The case

itr{m — =0 (16)

is called neutral state, whereas the positive rate of work of the gener-
alized stress

%tr{u} — S >0 (17)

determines the loading process.t
Let us introduce the following definition.
A non-linear material has plastic properties if its behavior is de-
scribed by different constitutive equations for loading and unloading.
This formal definition shows that the loading and unloading phe-

* This idea is similar to that of A. C. Pipkin and R. S. Rivlin [51].
t During the isothermal process, the criteria of unloading, neutral state and loading

take the respective forms tr{ZL} § 0, i.¢.,.they coincide with those first introduced by
A. E. Green [52].
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nomena for the same material are characterized by different features.

We shall not bother to introduce the distinction between elastic,
viscous and plastic deformations. Total deformation will be treated as a
combined result of elastic, rheologic and plastic effects.

We now intend to obtain, on the basis of the thermodynamic theory
of the rate type material, the general constitutive equations of an elas-
tic-viscoplastic material.* We shall use only the first order differential
equations. This, of course, implies some restrictions concerning the
memory of a material. We assume the following.

An elastic-viscoplastic material is a simple material of the rate type
of the first order which is characterized by different properties during
the loading and unloading processes.

Thus, in the thermodynamic process in a body B, which represents
loading, i.e., the condition (17) is satisfied, we postulate for an elastic-,
viscoplastic material the following system of the constitutive equations

1) = f(I1). W), @) (18)
with initial values
“(l‘n) = {111([0)7 n(te), T (o). Q(’o)}- (19)

For the thermodynamic process in a body B, which is unloading, i.e.,
satisfying the condition (15), we assume the following system of the
constitutive equations

1Lty = £ (1), W (o), W) (20)

The response functions fand f must satisfy the following condition for
a neutral state

f'zf'ifitr{[@} — 9= 0. (21)

This condition is the continuity condition for the first derivatives . 7.
T and ¢- Additionally, we have to assume the continuity condition for
the functions ¢, n, T and ¢. This assumption determines the initial
values for the system (20). N

It is worth noting, that the path dependence in the constitutive equa-
tions of an elastic-viscoplastic material of the rate type is expressed by
the following fact. The properties of this material are described by a
different system of equations for the loading and for the unloading
path.

After satisfying the principle of material frame-indifference, we can
write the systems of constitutive equations (18) and (20) respectively in
the following reduced and explicit form

#Cf. the previous papers of the author [53, 54].
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'jl: P, D*, U, 9, 9, RT” grad 9)
M= h(m, D*, U, ¥. ¥, R” grad 9)

T*=T(I* D*, U, 9. 9. R” grad 9) =2
R7g= §(Rg, D*, U, 9. ¥, R" grad 9)
and
= p(p, D, U, 9. 9. R" grad 9)
1= h(m, D*, U, 9. 9, RT grad o)
T+ = T(T*, D*, U, ¥, 9. R” grad o) (25)
R'g=§(R"g, D*, U, &, &, R grad 9)
where T# = R'TR, T* = R"TR and D* = RDR.

We assume that the constitutive equations of an elastic-viscoplastic
material in both the loading and the unloading ranges satisfy the ther-
modynamic postulate. By (8) we have the following inequalities:

—p(¥, D*, U, 9, 3, R” grad 19)+—tr{TL} nz?— 54 gradd =0 (24)

for

S o{TL} —md > 0 (25)
and
—p, D*, U, 9, ¢, R" grad 0)+—tr{TL} 1;19— g-gradd=0 (26)
for

%n{z@} —nd < 0. (27)

The inequalities (24-27) represent the basic restrictions imposed on the
constitutive equations for an elastic-viscoplastic material.

RATE SENSITIVE PLASTIC MATERIAL

Recent theoretical and experimental research in the domain of the
dynamical properties of materials has shown the significant sensitivity
of some materials to the rate of deformation. This effect is disregarded
in the inviscid theory of plasticity. The influence of strain rate may,
however, be taken into account, within the framework of assumptions
of an elastic-viscoplastic material of rate type.

Every material displays more or less definite viscous properties. For
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many materials, however, these properties are more pronounced after
the plastic state has been reached. In these cases it may be assumed that
material displays viscous properties in the plastic range only.

General foundations for the study of problems connected with rate
sensitive plastic material were given by K. Hohenemser and W.
Prager [55]. Further development of this idea is contained in the
papers [48, 56-61].

The basic assumption in the theory of rate sensitive plastic materials
is the additivity of the elastic and inelastic parts of the rate of deforma-
tion tensor

D=°D+D (28)

where D and 'D are the elastic and inelastic parts of the stretching ten-
sor, respectively.

To obtain the elastic response from rate type material we should
assume that the constitutive equation (22), is invariant under a change
of time-scale and is independent on the stretch tensor L. Thus, the
constitutive equation of a rate type for elastic response has form similar
to that of hypoelastic material

T=H,(T% 9)D]+ HuT*, 9)9. (29)

After substituting (28) into this equation we have the following re-
sult

['=Hu(T* 9D — DI+ HuT*, ). (30)
Since the material has no viscous properties in the elastic region, the
choice of an adequate yield criterion will be much simpler than in the
case of an elastic-viscoplastic material. The initial yield condition,
which will be called the static yield criterion, will not differ from the
known condition of the inviscid theory of plasticity at finite strains.
In order to keep our considerations sufhciently general, we now in-
troduce a static yield function in the form

ST E )

F T+, E, )= 1 31)
where the function f (7%, 'E, %) depends on the state of stress T and the
state of inelastic strain ‘E and temperature . The strain tensor E is
defined by the relation 2E = C — 1, and it is assumed that £ = °E + E.
The work-hardening parameter « is defined by the expression [35]

k = r{N(T* 'E, 9)D*} (32)

where N is a tensor function. The flow surface, % = 0, in the ten-di-
mensional stress and temperature space is assumed regular and con-
vex.
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We propose for the inelastic part of the rate of deformation tensor
the equation
D= yOKDF)M(T*, 3. 'E) (33)

where the tensor function M satisfies the relation
M=M" (34)

(&) denotes a viscosity coeflicient and the symbol (®(%)) is defined as
follows:
OforF =0

(D(F)) = {(I)(F) for F > 0.

(35)

The tunction ®(F) may be chosen to represent the results of tests on

the behavior of metals under dynamic loading. The proper choice of

®(F) at the same time enables a description of the influence of the rate

of deformation and the temperature on the yield limit of the material.
By (30) and (33) we have

T = Hy(T*, 9)[D — vy} ®F)MT*, 9. 'E)] + HT*, 9)9. (36)

This constitutive equation involves the assumption that the inelastic
part of the rate of deformation tensor is a function of excess stresses
above the static yield criterion. This function of stress above the static
yield criterion generates the inelastic rate of deformation tensor ac-
cording to a viscosity law of the Maxwell type.
It can easily be seen that the constitutive equation leads to the follow-
ing dynamic yield condition
(tTiDZ)l/Z
Y(d)

This relation determines the change in the actual yield surface during
the inelastic deformation process. This change is caused by isotropic
and anisotropic work-hardening effects and by influence of the rate of
deformation tensor and temperature on the yield point of the material.

The full system of constitutive equations for a rate sensitive plastic
material has been postulated in the following form *

= i, N (D — D) + po(h, 9)9

0 = hy(n, Nr(D — D) + hy(n, 9)9

T = Hy(T*, 9)[D — D]+ Hy(T*, 9)9 (38)
R’g= q,(R"q, &, R” grad 9)(D — 'D) + ¢,(R"g, 3, R” grad 9)9

D =y PE)M(T*, 3, 'E)

Fs B ) = w0 ) {1+ 0t | Yol | RET

#Axdifferentyapproachsforgestablishingsthe constitutive equations for a rate sensitive
plastic material has been recently presented in the paper [61].
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with initial values
W(ty). n(to), T(t), qlto)- (39)
The constitutive equations must satisfy the thermodynamic postulate

=i Ir{D — Yy DEF))M(T*, 9. 'E)}
— P, 9D +% tr{TL} — nd _5—119 g grad 9 = 0. (40)

After assuming the infinitesimal deformations [42] and perfectly
plastic material with Huber-Mises initial yield condition we obtain
from (38); and (38); the constitutive equations for a temperature and
rate sensitive plastic material which were discussed in the paper[59]. In
that paper a detailed analysis of some particular cases of the constitu-
tive equations and a comparison of theoretical and experimental re-
sults for metals can be found. Reference [59] also presents a complete
discussion of the problem of an appropriate selection of the tempera-
ture dependent coefhicients (cf. also the review paper [48]).
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SOME EXPERIMENTS IN DYNAMIC
PLASTICITY UNDER COMBINED STRESS

ULRrRIC S. LINDHOLM

Southwest Research Institute
San Antonio, Texas

ABSTRACT

The deformation of aluminum at strain rates from 107 sec™ to 10? sec™ and tempera-
tures from 300° K to 700° K is studied experimentally under a range of stress states in-
cluding tension., compression. torsion, and combined tension and torsion. The results
from these tests are compared with a generalized constitutive equation developed from
the thermallv-activated dislocation model of deformation. Predicted functional relation-
ships between the stress, strain and strain-rate invariants and temperature are sup-
ported by the experimental data.

INTRODUCTION

This paper will present some experimental results on the plastic
flow of aluminum subject to a rather wide spectrum of loading condi-
tions. This spectrum includes stress states of pure compression, ten-
sion and torsion as well as combined stress states incorporating tension
and torsion. In order to demonstrate the rate sensitive or viscoplastic
behavior of the metal, the rate of loading is varied to produce strain-
rates within the range of 107 sec™ to 10? sec™'. Finally, for compres-
sion and tension, elevated temperature data from approximately
300° K to 700° K is obtained over the complete range in strain rates.
The purpose for performing these comprehensive stress/strain/strain
rate/temperature tests on aluminum is to determine to what extent the
material behavior can be described with a single generalized constitu-
tive equation.

It has previously been shown [1, 2] for 1100-0 aluminum in compres-
ston, at room temperature, and over the same range in strain-rate that
the response can be described by a constitutive relation based upon the
assumption that a single, thermally-activated mechanism governs the
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dislocation motion. The same assumption is made herein, with the one-
dimensional relations being generalized to include combined states of
stress. The generalized constitutive equations are constructed so as to
be analogous in form to those given by Perzyna [3, 4] for viscoplastic
materials. Basing the generalized constitutive equations on a particular
mechanism of deformation serves the purpose of defining explicitly the
functional relations and gives physical meaning to the parameters in-
volved.

The experimental data presented is in general agreement with the
constitutive relations derived. Aluminum 1100-0 was chosen as the
specimen material because of the considerable amount of background
information already available on this metal. Also, it has a moderate
rate-sensitivity and it yields and strain-hardens in a very uniform man-
ner at stress levels convenient for the experimental procedures used.
Most of the experimental data is obtained with either uniaxial or pro-
portional loading paths and at approximately constant plastic strain-
rate. Some experiments are presented, however, to illustrate the be-
havior under sudden changes in the direction of the applied stress or
the rate of deformation.

CONSTRUCTION OF GENERALIZED CONSTITUTIVE EQUATIONS

With the assumptions that thermal activation as well as the applied
stress is effective in producing dislocation motion and that the activa-
tion energy is linearly stress dependent, the strain rate can be ex-
pressed in the following form [2, 5] for a simple state of shear;

oy Hy—v¥(r —1%)
v’ =m exp [— —~k—T——]

= exp (~ 1) exp [ (5 1)] (1)

where y” = plastic shear strain-rate

7= applied shear stress
T = absolute temperature
n = frequency parameter

H, = total activation energy
k = Boltzmann constant (1.22 X 10722 in. 1b/°K)

v* = activation volume

7% = internal athermal stress component opposing dislocation

motion

In the most general case, all four internal material parameters H,, 7,
v* and 7* may be considered functions of the four independent varia-
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bles, ¥*, ¥", 7 and T. In the present development, however, we will re-
strict Hy and 7 to be constants and v* and 7* to be functions only of the
plastic strain, y”. More precisely, v* and 7% will be dependent upon the
internal dislocation structure in the metal, but we may assume that the
externally measurable parameter y” represents or is proportional to
this internal structure and its change with gross deformation.

In order to extend (1) to generalized states of stress, certain common
assumptions will be made. It is assumed that components of the total
strain-rate tensor may be resolved into independent elastic and inelastic
components such that

€= €/ + & (2)

where the superscripts £ and P denote the elastic and inelastic parts,
respectively. The elastic component of deformation is taken to be inde-
pendent of the rate of strain; i.e., elastic deformation involves no net
resultant motion of dislocations. The inelastic components. &, con-
tain both plastic and viscous effects. Similarly, the stress tensor and the
elastic and plastic components of the strain and strain-rate tensor may
be resolved into their respective spherical (volumetric) and deviatoric
(distortional) components. In the following, a single prime will denote
deviatoric components and a double prime will denote spherical com-
ponents. For stresses of the order of magnitude of the yield stress in
metals, a spherical or hydrostatic state of stress is assumed to be of no
influence on the plastic component of deformation. On the basis of
recent experiments [6], this assumption will be extended to inelastic
viscous effects also.

For temperature-dependent and strain-rate sensitive materials,
Perzyna [2] has suggested a yield function of the form

_ ST, &)

F= k(W", T)

1

where the surface defined by F = 0 is assumed regular and convex.
The strain-hardening parameter, k, is taken as a function of both the
plastic work W” and the temperature. For the present purposes, we
will employ a somewhat simplified, explicit yield function of the form

AV Y A
F=m ~ ' Ty

1 (3)
where [, = tojj0; and [, = 1€/ are the second invariants of the
stress and plastic strain deviatoric tensors, respectively. The yield func-
tion based upon J; only is analogous to a Mises’ yield criteria. The
strain-hardening parameter, k = 7%(1,"), is the same as the athermal
component of the stress in (1) and will similarly be assumed a function
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of the plastic strain invariant only. The assumed dependence of 7* on
L¥ rather than on W* is one of convenience in the later deteriaination
of material parameters from the reduced experimental data. The two
assumptions are not equivalent in viscoplasticity, since the plastic work
will depend upon the rate of deformation as well as the total deforma-
tion. The question remains open as to whether the plastic work or a
measure of the plastic deformation such as I,” correlates best with the
internal structure of the metal. We have arbitrarily chosen the more
convenient of the two from the standpoint of computation. Tempera-
ture effects will be introduced through the functional dependence of
the plastic flow rate on F.

Again following Perzyna, the plastic component of strain-rate is
given by

of

€l = A0(F) 5
¥

)

where 7, F and the function ® may all be temperature dependent. The
choice of ) and ®(F) will be selected based upon the relationship of (1)
for simple shear. Thus,

P 2 <_ i") (U*T* F) af

C =M EXPATRT) P\ ) G0,
_ _H, v (|3 >] oy
_"”e"p< kT) e"p[kT ( = )| ©)

The constants n and H, remain the same as in (1) while the parameters
v* and 7* are now functions of I,” rather than of y. Upon adding the
elastic components, the total constitutive equations become

oo Loy (_&) A (Uél‘“ _ 1) i
€;; = 2“ i n exp kT exp kT g ]‘]él”?

‘II_L‘H r
€;; = 3K 0'“+aT

(6)

where p and K are the elastic shear and bulk moduli and « is the co-
efficient of thermal expansion.
The dependence of the yield function on strain rate and tempera-
ture is determined by squaring both sides of (5). This yields the rela-
1P|z — _Ze
= exp (1) exp

tion
) o
P

where #,F = 3€;'€/”, is the second invariant of the inelastic strain-rate

H,




Experiments in Dynamic Plasticity 81

deviator.* Equation (7) may be solved explicitly for the stress invariant
to give
H, kT "
P12 — sk _ . ).
[J5] L log, <|]£,, 1,«:) (8)

Viscoplastic flow will occur for F> 0 and 0 < T < T,, where T.=
Hy/k log. (/|.#5"]"?). At the temperature T, the thermal energy avail-
able is itself enough to overcome the potential barriers without the as-
sistance of additional applied stress, i.e.. the activation barriers become
essentially transparent to the motion of the dislocation. For T" = T, the
applied stress required to produce plastic flow becomes independent
of the rate of deformation and equal to 7% Thus. F =0 for T = T..

In the present approach, the transition from elastic to inelastic be-
havior will be governed by the functions 7#(/;”) and v*(/;"). For small
values of I,”, the plastic strain-rates can be made vanishingly small.
Actually, as 7 approaches the value of 7% in (1), it becomes necessary to
include the probability that a dislocation may move by means of ther-
mal activation in a direction opposed to the applied stress. For this
case, (1) becomes

v Hy —v¥(r —7%) Hy+ v*(r — 1%)
Y= {exp Sy Bkl ey S
- _Hoy o [T
= 2n exp ( l{T) sinh [ T ] (1a)
Correspondingly, for the general case
: Hy\ . v of
P _ My . ’
€ = 4n exp ( kT) sinh ( T F) py (5a)

Equations (5a) and (5) differ significantly in magnitude only for values
peratures. Equations (la) or (5a) often are used to describe creep
phenomena.

The material parameters Hy, n, v* and 7# may be determined from
mechanical testing at constant strain-rate and temperature. For this
purpose, certain derivatives of (8) are useful. The activation volume
v¥(I5") is determined from the slope of the stress-log strain-rate curve
at constant temperature and strain by the relation

i) kT (
(d log, |75 1/2)7 R (9)

= o

* When taking square roots of the invariants. absolute value signs are used since the
invariants may have negative values.
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Once v* is determined the frequency parameter 7 can be obtained
from the slope of the stress-temperature curves at constant strain and
strain-rate by the relation

AR g L
el - == log, 21— 10
( ar /.. . v* log. 7 (10)

The other two parameters 7# and H, can also be determined from the
plot of |J3|*? vs T. At T = 0, |J3|V2 = 7% + H,y/v* and is independent of
the rate of deformation. The additional relationship needed to deter-
mine 7* and H, independently is that for T,. T, is not always easy to
determine and may, in fact, be greater than the melting temperature.
In the case of annealed aluminum, 7¥ is evidently very small as will be
seen. Determination of these material parameters will be more ap-
parent when the experimental results are presented.

EXPERIMENTAL METHODS

Experimental results were obtained with three different types of
machine. In uniaxial tension and compression, an Instron machine
was used for low strain-rates and a split Hopkinson pressure bar sys-
tem was used for high strain rates. The Hopkinson pressure bar sys-
tem for tension and compression has recently been described in detail
by the author [7]. Both the Instron and pressure bar tests were per-
formed at room and at elevated temperatures to 700° K. Specimen
geometries and dimensions for the uniaxial tension and compression
tests are shown in Fig. 1.

Biaxial tests at low to intermediate strain rates were performed on a
pneumatic piston-type machine also previously described in the litera-
ture [8]. This machine loads a thin-walled, tubular specimen (see Fig. 1)
in combined tension and torsion. The pressure systems controlling the
tension and torsion modes are independently controlled so that any
ratio of combined stress between pure tension and pure torsion is
possible. Rate control is afforded by means of replaceable, fixed orifice
plates in the discharge lines of the actuating pressure reservoirs. Maxi-
mum strain rates obtained on this machine with aluminum were of the
order of 50 sec™!, approximately one order of magnitude less than the
minimum rate of the split pressure bar test. The lower rates of the bi-
axial machine overlap with the range of the Instron.

Additional capabilities of the biaxial machine include the capacity
for abrupt changes in the rate of loading or in the direction of loading.
The rate of loading is changed by control of the pressure differential
across_the driving piston. Change in the direction of loading, such as
from pure torsion to tension, is achieved by the opening or closing of
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Fig. 1. Specimen geometries and dimensions.

valves which are fixed to the motion of the piston. By this means, the
high pressure driving the piston in either the tension or torsion modes
may be dumped at prefixed positions in the stroke of the piston,
thereby causing an abrupt change in the applied stress ratio. This re-
sults in a rapid rotation of the principal axes of the stress and strain
rate.

All results reported are for 1100-0 aluminum specimens. Dimen-
sions of the specimens are given in Fig. 1. After machining, all speci-
mens were heat-treated at 650° F for two hours in air.

AMBIENT TEMPERATURE, CONSTANT STRAIN-RATE TESTS

These tests include all the modes of loading previously described.
For states of stress incorporating only axial tension or compression,
+g, and shear, 7, the stress, strain, and strain-rate invariants are given
by,
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Ji=—@Go*+ 1)
1P =—3(3€” + ") (11)
I =—1(3" + ')

where €’ and y” are the plastic components of the axial and shear
strains, respectively. Since we are considering finite deformations, the
axial components of the stress and strain are computed as true stress
and logarithmic strain in all the subsequent data. Also, we will want to
consider the orientation of the principal axes of stress and strain rate
with respect to the longitudinal axis of the specimen. These angles are
given by the relations

_1 2
0= 5 tan -
and (12)
1 2y
= — -1 __.
b=y tant g

We may now compare the functional relationships between the three
invariants and temperature given by (8) with the experimental results.
Figure 2 presents typical stress-strain curves for the aluminum plotted
in terms of the invariants. Each curve is obtained at constant tempera-
ture (294° K) and strain-rate. For all the tests reported in this section
the stress ratio, 7/o, was maintained nearly constant during the defor-
mation. The flags on the points plotted in this and subsequent figures
indicate the direction of the principal stress axes. The horizontal axis is
tension to the right and compression to the left, with the vertical axis
being pure shear, similar to a Mohr’s circle representation. Combined
stress states lie between the tension and shear axes.

In Fig. 3, the data of Fig. 2 and a large number of additional tests are
replotted to show the relation between the stress and strain-rate in-
variants at constant strain amplitude and temperature. According to
(8), this should be a linear relationship on the semi-logarithmic plot.
The straight line through the experimental points at each strain ampli-
tude is a best least-squares fit. The standard estimate of error of the
data about the mean is 5.4% for the lowest strain and less than 3% for
the two higher strain amplitudes. This can be considered good agree-
ment when it is recalled that the data were obtained on three different
types of machine, with three different specimen geometries, and in a
variety of modes of loading. The scatter that does occur in the data
would not appear to be reducible by a more complex choice of the yield
function, such as inclusion of a term proportional to 3.

The slopes of the straight lines in Fig. 3 are used to determine v* as a
function of I;* by the relation (9). These values of v* are plotted in
Fig. 4. The magnitude of v* is of the order of 1005*, where b is the
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Burger's vector for slip in aluminum. The decrease in activation
volume with strain is due to an increase in the number of activation
sites resulting from dislocation multiplication.

ELEVATED TEMPERATURE TESTS

In order to assess the thermal dependence of the constitutive rela-
¢ performed in tension and com-
the split pressure bar. These re-
vs. strain rate in Fig. b and stress
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Fig. 4. Activation volume and stress, extrapolated to zero temperature, vs. strain in-
variant.

vs. temperature in Fig. 6. Figure 6 includes additional data taken
from a paper by Chiddister and Malvern [9], who also used the split
pressure bar method at elevated temperatures. The slopes of the lines
in Fig. 5 are not determined by a best fit through the data points but
are those determined by the values of v* computed from the room tem-
perature tests and given in Fig. 4. At constant strain, the change in
slope is directly proportional to the change in temperature since v* has
been assumed independent of temperature. The rate sensitivity at ele-
vated temperatures is thus seen to be predicted relatively well from the
room temperature results.

Again, the values of do/dT in Fig. 6 are based upon the room tem-
perature activation volume as well as a constant value of the frequency
parameter ) and the consideration that at absolute zero temperature
the stress is independent of the rate of deformation. For the straight
lines in Fig. 6, = 4.5 X 10" sec™". This value for n is determined from
the above considerations and the use of (10). The fact that n > € re-
sults in a positive magnitude for the logarithmic term in (8). The stress-
strain relation at T =0 is given by o/V3 = 7% + Hy/v*. These values,
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determined from the zero intercepts of Fig. 6, are plotted in Fig. 4.

For annealed 1100 aluminum, the magnitude of 7* is very small and
it is not possible to determine the temperature 7. from the data pre-
sented. Thus, we can only estimate that 7% has a magnitude of 2000 psi
or less and that the total activation energy of the barriers is then of the
order of 5 X 107" in. Ib.

Based upon the elevated temperature data presented, the tempera-
ture dependence expressed in the constitutive Equation (5) appears
to be qualitatively correct and the material parameters may be chosen
bredictions. Extrapolation beyond
re considered may be dangerous,
formation may become effective.
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BIAXIAL LOADING ALONG NON-PROPORTIONAL PATHS

All the preceding experimental data was obtained with the stress
ratio, 7/o or O, and the rate of plastic deformation, #;", nearly con-
stant. Several tests of an exploratory nature were performed to deter-
mine the material response under sudden changes in the direction or
the rate of loading. The results of these tests are presented in Figs.
7-10. Each figure contains the relationship between the stress and
strain invariants, value of the angles © and ¢ and the path of the de-

I
J; = const.

TALRTSE
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Fig. 8. Deformation during vapid rotation of principal stress axes.

tformation in the 7 — o plane. Points on each curve are numbered
sequentially so that corresponding points may be identified.

Figure 7 illustrates a test where the direction of the principal
stresses is rotated a full 45° from the shear to the tensile stress axis.
This occurs, however, under continuously increasing values of J; and
nearly constant rate of deformation, |Z,"|"? = 1.5 sec™'. Magnitudes
of J, are consistent with those obtained from proportional loading
paths at equivalent stages of the deformation. In Fig. 8 a more abrupt
{ as achieved by means of a more
nal loading. In this case the rota-
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Fig. 9. Deformation during change in rate and direction of loading.

tion of the principal axes is accompanied by unloading and a decrease
in the rate of deformation. During the initial portion of the curves the
strain is accelerating slightly up to point 7 where | £5°|V2 = 4.9 sec™.
For points 7 through 12, the rate of deformation decreases approxi-
mately one order of magnitude to |£3|"* = 0.43 sec™ at point 12. This
is accompanied by an unloading or decrease in J;. While unloading
occurs in the sense that df;/dt < 0, the response is still viscoplastic
since F > 0. In this unloading region the time interval between suc-
cessive points is less than 2 milliseconds. Positive loading commences
rmation accelerates to the value of
relatively constant thereafter.
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In both Figs. 7 and 8, the angles © and ¥ are approximately equal
throughout most of the deformation as is required by (5). Small dif-
ferences of the order of 3° are not considered significant because of
limitations in the experimental accuracy. A wide divergence ot 20°
does occur in Fig. 8 at point 12 where there is a sudden change in the
direction and rate of loading. However, at this time dynamic effects in
the extensometer or dynamometer cannot definitely be ruled out as a
cause for this divergence. More extensive experiments on the possible
role of dO/dt in the constitutive relation are perhaps warranted.

The final two experiments to be reported include a sudden change
in the rate of loading simultaneously with a change in direction. In

sl |47 |2 =1.0x 107 sec™" (6-¥=0°) ®
25x 107" sec! (B-¥=43°) O

0.14

1498

unloading.
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Fig. 9 the specimen was loaded at a very slow rate in torsion to a shear
stress of 4000 psi. The loading was then transferred dynamically to the
tensile axis, reaching a deformation rate of |#;"|V2 = 1.0 sec™" at about
point 10. During this period of acceleration and rotation of the prin-
cipal axes, ], remains essentially constant. The plastic strain developed
during this period of rotation is very small because the rotation occurs
in a short time interval (less than 50 milliseconds). After the sudden
change in deformation rate and direction of loading, the magnitude of
J» rapidly approaches those values to be expected if the test had been
performed continuously at the higher rate. One final comment on this
test is that the constancy of J, during the transfer of loading from the
torsion to the tension axis is not a programmed loading path. Rather,
the response is determined to a large extent by the properties of the
specimen itself as well as by the dynamics of the loading device. In this
case, the loading was developed by a slow buildup of the pressure dif-
ferential in the torsion system followed immediately by the sudden
application of a large pressure differential driving the tension system.
Only the resulting load transfer and deformation of the specimen are
measured. The fact that the loading path follows closely a curve of con-
stant ], reflects on the properties of the specimen.

The final specimen response shown in Fig. 10 shows an initial,
slow loading in tension, a partial unloading, and then a higher-rate re-
loading in torsion. The interesting point here is that the stress levels
in each portion of the stress-strain curve are those predicted from the
proportional loading data at the corresponding rates of deformation.

These few tests indicate that within the normal scatter of the data,
there does not appear to be any marked evidence of the effect of
previous loading history, either rate or direction of loading, on the
subsequent material response. Thus, under the conditions of these ex-
periments in aluminum, expansion of the yield surface by both strain-
hardening and increasing deformation rate appears to be relatively
isotropic. This certainly will not be generally true, however, ad evi-
denced by the many quasi-static experiments on strain-hardening
under combined stress.

CONCLUDING REMARKS

In this paper the author has attempted to combine the results of
classical continuum theory with a possible model for dislocation mo-
tion, in order to construct a generalized constitutive equation. Experi-
mental results on the deformation of aluminum under a wide range of
the deformation rate, temperature and load condition are then shown
to be in fair agreement with the constitutive relation derived. The



Experiments in Dynamic Plasticity 95

agreement between experiment and theory is based upon relationships
between the pertinent invariants of the stress, strain and strain-rate
tensors only. Prediction of detailed response of a structure to complex
loading paths requires the actual integration of the constitutive equa-
tions. The form of the proposed constitutive relation cannot be ex-
pected to fit all metals and possibly not even all possible mechanisms of
deformation in aluminum. Other models for dislocation motion have
beeni proposed which may be generalized in a similar manner. The
thermal activation model chosen here is particularly useful because it
describes the effects of both temperature and stress on the dislocation
motion in a relatively simple manner.
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THE SPEED OF DUCTILE-CRACK
PROPAGATION AND THE DYNAMICS
OF FLOW IN METALS
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ABSTRACT

In this paper the connection between the speed of ductile-crack propagation and the
dynamic-flow properties of metals is examined. A theoretical analysis based on a dynamic
solution for the Dugdale crack model and employing descriptions of 1) the strains
within the plastic zone, 2) the rate dependence of the flow stress, and 3) a simple
criterion for ductile fracture is developed. The calculations are found to compare
favorably with observed crack speeds of 1.6 to 410 ft/sec in 0.00175-in.-thick steel foil.
It is concluded that ductile-crack speed is limited by the increased resistance to plastic
flow at high strain rates. The key factors determined in the analysis are used to show that
flow stress data for strain rates exceeding 10* sec™! can be extracted from ductile-crack-
propagation experiments.

INTRODUCTION

Ductile-crack propagation in metals—whether by the shear or by the
fibrous mode—is preceded by intense local plastic deformation. The
crack propagates rapidly and imposes a steep strain gradient on the
material immediately ahead of it. Consequently, the metal just in front
of a propagating ductile crack deforms at high rates: 103 to 10° sec™’,
rates for which the resistance to plastic flow is markedly increased.
Taken together, these observations suggest the following possibilities:

1) The speed at which a ductile crack propagates is limited by the
increased resistance to plastic flow encountered at high strain
rates, i.e., plastic deformation is the rate-controlling process.

2) Ductile-crack speeds can be calculated by a method of analysis

* Presently at the Umiversity of California, Davis, California.
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Zone ‘\

(b)

Fig. 1. The Dugdale Crack: (a) Schematic drawing of a crack with narrow wedge-
shaped plastic zones, and (b) The Dugdale model of a crack [1].

that takes into account the attendant local deformation and the
rate dependence of the flow stress.

3) Information about the flow properties ol metals at high strain
rates can be extracted from crack-speed measurements with the
aid ot a suitable analysis.

To test these ideas, experimental measurements of the crack speed
are compared with calculated values that are based on the dynamic
solution for a Dugdale crack. This model [1] represents the plastically
deformed regions as thin extensions of the crack (Fig. 1). A uniform
internal stress equal to the yield stress of the material is imposed in the
yielded region. In Dugdale’s analysis [1], which employs a solution
given by Muskhelishvili [2], the length of the zone is adjusted such that
the stress singularities at the crack tips are abolished. With no further
refinements, the model predicts values of plastic-zone size and crack-
tip displacement. These predictions are found to be in agreement with
experimental results under conditions where narrow and wedge-
shaped plastic zones are observed [1, 3].
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Fig. 2. Distributions of internal tension. (a) Uniform distribution treated by Dug-
dale [1], (b) Varying distribution, and (c) Stepwise approximation of (b).

The possibility of using the Dugdale model to treat the deformation
within the plastic region, produced by both stationary and running
cracks, was first examined by Goodier and Field [4]. Further progress
was made by Rosenfield, Dai, and Hahn [5], who extended the Dug-
dale model to handle a flow stress that varies along the length of the
plastic zone as a result of strain-hardening or rate effects. Their model
was formed by superposing simple Dugdale solutions to obtain a step-
wise distribution, as shown in Fig. 2. A simple model for straining
within the zone was also introduced to relate the displacements to the
strains and the internal stress to the flow stress. The final link was pro-
vided by the stress/strain/strain-rate characteristics of the material.
Using this model, Rosenfield, Dai, and Hahn [5] actually calculated
ductile-crack speeds in a hypothetical material, but no attempt was
made to check the calculations with experiments.

In the present paper, a theoretical analysis of the dynamic solution
of the Dugdale crack is derived. These calculations are compared with
crack-speed measurements on 0.00175-in.-thick, cold-worked steel
foil, a material selected because it displays narrow wedge-shaped zones
like the model. The calculations.and the experiments lend support to
the idea that ductile-crack speed is controlled by the rate of plastic de-
formation. Finally, a simplified theory based on the key factors in-
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fluencing crack speed is constructed. This theory, together with Kobay-
ashi and Engstrom’s [6] crack-speed data on 7075-T6 aluminum, is
used to demonstrate the possibility of deriving flow-stress data from
crack-propagation experiments.

A DYNAMIC-CRACK-PROPAGATION MODEL

The starting point for the development reported in this paper is a
solution for a Dugdale crack propagating at a constant speed, U, in an
infinite sheet subjected to a uniform tensile loading, 7. This solution,
which includes the static solution as a special case. was developed bv
following the work of Radok [7] and Sneddon [8]. In other respects,
however, the tollowing development parallels that given by Rosenfield,
Dai, and Hahn [5].

An outline of the derivation of the dynamic solution appears as Ap-
pendix A. The key results given there are, first, the finiteness condition

¢ T |

i cos 9y (1)
where Y is the yield stress of the material and ¢ and « are as shown in
Fig. 1. The normal stress on y= 0 at time t= 0 is

0 x| < ¢
Y c=xl=<a
. @)

X
Ytan™' = a < x|
c

3 e

while the normal displacement, v, is

cloe | ad—cd—c az—x2‘+clo)_ Va*—c* 4 V@ —x*
_2Y .
v—ﬂ_EEZ(L) x| <a
0 x| = a

(3)
where Z(U) is a function of the crack speed and the wave velocities in
the infinite medium U, and U,. It is readily seen that not only are (1)
and (2) independent of U, but that they are exactly the same as in the
static problem. Furthermore, with the exception of the factor .#(U).
the expression obtained for the displacement is the same as that ob-
tained for the Dugdale model by Goodier and Field.

The function .Z(U), which multiplies the static displacements, is
shownsin Fige3-lt.canbeseensthatas the crack speed increases from
zero Z(U), the values of displacement steadily increase from their
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Fig. 3. The function .#(U) for v = 0.3 and plane stress conditions.

static values to become infinite at the velocity of Rayleigh surface waves
Ug. (This phenomenon is discussed by Craggs and Roberts [9] who en-
countered it in their solution for a heavy rigid cylinder moving over
the surface of an elastic half space.) However, when the crack speeds
are small in comparison with Ug(Ur = 9800 ft/sec in steel, 9600 ft/sec
in aluminum [10]), the dynamic effects are not significant, as Fig. 3
shows. In the present work, the crack speeds are always small enough
so that the function .#(U) can be set equal to its static value (unity for
plane stress).

Following Rosenfield, Dai, and Hahn, a stepwise varying distribu-
tion of internal stress S(x), as shown in Fig. 2, can be envisaged. Ex-
pressions for the plastic-zone length and the displacements are then
obtained by linear superposition of (1) and (3). Despite the fact that the
equations.can only be solved when.a finite number of increments are
specified, it is also useful to provide the more exact expressions ob-
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tained for the limiting case of a continuously varying distribution.

These are: e
S
f (E) dg )
which is the generalization of (1), and
= 7 s O g (5)
where
el \m—gm’+ oo | YEZEF Ve~ 6
Vo=l | Ve v Ve | T8 I Neme Va2 | ©

which is the generalization of (3).

In order to properly determine S(x). which must depend on the
strain and the strain-rate distribution in the plastic zone, a relation be-
tween displacement, v(x), and the maximum plastic strain, e(x). at each
point must be developed. Then, by relating € and € to S at each point, a
unique determination of all the quantities of interest can be made. It
should be emphasized, however, that these essential parts ot the solu-
tion are not included in the solution to the boundary value problem
represented by the propagating Dugdale crack, but are obtained from
a supplemental model.

An approximate relation between v and e at each point along the
zone can be derived by treating the zone as a collection of tensile bars.
Each bar is considered to be elongated an amount 2v by straining in the
y-z-plane only, i.e., through the thickness.* Because the material of
interest displays so little strain hardening, a neck will tend to form as
soon as vielding begins. Initially, the necking will be confined within a
distance, d, comparable to the sheet thickness. As can be seen by re-
ferring to Figs. 4a and 4b, the deformation will occur at constant
volume, so that 4, = A4,, and it will tend to be confined to the minimum
section of the neck. For these circumstances the following relation can

be derived:
b _ (_1_)
b, \1—Buv

Here, b is the original sheet thickness, b, is the minimum thickness of
a particular section, and B is a constant related to the shape of the neck
(the derivation can be found in a companion paper [11]). By definition,
the maximum true strain is

e = log (b%) (7)

*Large strains in the plane of the sheetare precluded by a zone whose shape is nar-
row and elongated in the x-direction.
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Fig. 4. Schematic drawing of the sheet cross section in front of the crack (a) Before
yielding, (b) After some yielding, and (c) Showing the relation between the internal stress
S, and the true flow stress . Constancy of volume requires that 4, = 4,; the symbol b
represents the original thickness of the sheet.

so that

e = log (I—_LE) (8)

which is the strain-displacement relation used in this paper.
To complete the mathematical formulation of the problem, the
strain rate, €, is, using (8),

de  BU dv

U T T—Bud ®)

The true stress at the minimum section is then given by the function
describing the flow properties of the material: o = o (€. €).* Finally, the
true stress is related to the internal stress by noting that from Fig. 4c,
b
S=o ?1, or, that from (7),
S = o(e, €) exp (—e). (10)

* Throughout this paper we assume that stress is a single-valued function of strain and
strain rate, independent of history; i.e., a mechanical equation of state exists. To the ex-
tent that the experimental material fails to obey the mechanical equation of state, the
numerical results will be in error. However, it is not expected that this error will be large.
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CONSTITUTIVE RELATIONS

The velocity measurements described in this paper were performed
or cold-worked. 0.08% carbon steel foil, 0.00175 in. thick.* The ma-
terial was especially selected because cracks in the foil produce plastic
zones shaped like those of the Dugdale model (as shown in Fig. 5). The
foil is not only experimentally easy to handle, but also enables the
existing data on low properties of steel o be used.

€:001

H
L 0.01 in. ]
(a)
|
os|— —_— K
Somple Cin. /M
g B ol-3 0.110 032
s, al-5 0.110 032
; ’\.\‘ 21-6 0.220 032
I- 44
w o2 \\ " ___e|-8 0440 029
<€ Q\ Caleulation
o .
= e
w . -
E tosp * ~
3 * -,
E BYXEN
g on—— -
=
00 000

Distance in Front of Slit (x-c)in.

(b)

Fig. 5. Plastic zones in steel foil: (a) Example of the strain distribution ahead of a
sharp notch as revealed by an interferometric microscope while the sample was fully

loaded to Y- 0.35 Vin., and (b) Strain gradients existing at the onset of stable crack

growth.

Plastic Flow

It was assumed that the following relation, based on results for a
number of steels [12-29], is also applicable to the foil:

#The foil, which was made available by Dr. E. T Stephenson of the Bethlehem Steel

ion, 1 0 j : dysof-local yielding and crack extension reported
thickness of the toil was 0.00185 = 0.0001
n. as a result of electropolishing.
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6000 + 2000 l()gu) é | =€
Y —Y,=146000+ 8000 log,, € 1110 = é= 1 (1)
25€ €= 1110.

Here, Y(psi) is the yield stress, Y (psi) 1s the yield stress for a strain rate
of 107 sec™ (the “static” yield stress), and e(sec™'), as previously de-

fined, is the plastic strain rate. This relation, together with the data

in Fig. 6.
tained from tensile tests. The re-
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Fig. 7. LExamples ol flow curves of steel foil as defined by equations (1T) and (12).

lation between flow stress and plastic strain after the onset of yielding
could not be obtained [rom tensile tests,® but was deduced [rom data
reported by Embury, Keh, and Fisher [30]. "Their results indicate that
a mild steel, cold reduced to the 105,000-psi strength level, continues
1o deform with a modest, approximately linear rate of strain harden-
ing:

=Y+ ¢e (12)

where o (psi) is the true stress, € the true plastic strain, and ¢ (= 30,000
psi) is a strain-hardening cocthcient, which was assumed to be inde-
pendent of the strain rate. 'The function o(e. €) 1s obtained by combin-
ing (1'1) and (12). Examples of flow curves calculated in this way are
shown in Fig. 7.

# Foil \.unpl( s |)cum to nee k soon alter the onset off \I(I(lmg T'he energy stored in the

k to [racture in an uncontrolled manner
> overall extension accompanying necking
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Strain-Displacement Relation

The value of the strain-displacement coeflicient, B, appropriate for
steel foil was determined by fitting (8) to actual strain and displacement
measurements. As described in the companion paper [11], the value
B =950 in."" gives a reasonably good description of the deformation
all along the zone before crack extension, and also of the deformation
observed after fast fracture. Examples of the foil cross section just be-
fore and after slow and fast [racture are shown in Fig. 8.

Ductile Fracture

The broken sections shown in Fig. 8 reveal that the foil fractures
mainly by the ductile shear mode. For a given stress state, the develop-
ment of a ductile shear crack is probably associated with a critical strain
that is related to the microstructure and the flow properties of the toil
—at least to a first approximation [31]. Results of crack-extension ex-
periments performed on the same foil and reported separately [11]
support this idea. As shown in Table 1, crack extension begins when
the strain at the crack tip reaches a value € = 0.24. This value is inde-

Table 1

CRACK-EXTENSION ProrerTIES OF STEEL FoiIL [11]

¢, in® 0.110 0.220 0.440
€¥ (measured) " 0.21-0.25 0.22-0.24 0.23-0.265
T, ksi (measured) ” H8-63 41-44 28.4-30.4
T, ksi [calculated for € = (.24 9] 57 42 30
K., ksi Vin. (measured)® 34-37.0 36-36.5 $3.4-49.3
K., ksi Vin. [calculated for ex= 34 35 36

0.24 (]
K., ksi Vin. [calculated for ex= 48 49 53
110 o]

(a) Centrally located, spark-machined slit 0.006 in. wide in a sheet.

(b) The range quoted here reflects experimental scatter only.

(¢) Obtained from calculations described in Fig. 11.

(d) The two values quoted reflect the increase in crack length and stress during growth
stage.

(e) Hypothetical K. value associated with €f = 1.10, a value displayed only by fast-
moving cracks.

pendent of the average applied stress on the foil and of the crack
length. Furthermore, this value is not exceeded during the period of
stable crack growth.

Sections of the foil penetrated by fast-moving cracks and also un-
notched tensile coupons experienced a much larger strain before frac-
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0.00IB sec
R

0.0027 secC
(a)

Fig. 9. Crack speed data for a sample loaded to T7Y = 0.87: (a) Successive frames
from 3300 fps motion picture film, and (b) Crack propagation record derived from the
film showing the initial constant speed stage AB.

ture—e¥ = 1.10 (see Fig. 8)—and this is again independent of stress
level or crack length. Since both the precracked foils and the un-
, the value of € = 1.10 may be a
ation. One possible explanation is
sitivity displayed by steel at rates
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Fig. 9 (b)
above 1110 sec™.* On the basis of these observations, the following
ductile-fracture criterion was adopted for the steel foil:

N 0.24, U ~ 0%
€f= .
‘ 1.10, U > 1 {t/sec.

EXPERIMENTAL MEASUREMENTS AND RESULTS

Crack-speed measurements were performed on 3.25 X 3.5-in.-foil
coupons initially containing a centrally located slit, 0.220 in. long by
0.006 in. wide (¢= 0.110 in.), introduced by spark machining. The
samples were cemented into grips, mounted in a creep machine, and
dead loaded to a point just below the level for crack extension. Then, a
high-speed motion-picture camera (3300 frames per sec) was activated
and, simultancously, an additional load increment was applied. In this
way, crack propagation was recorded at a number of different load
levels. Sample frames from one of the films are shown in Fig. 9a. Fig-
ure 9b is a record of crack propagation obtained by measuring the
crack length on successive frames. Velocities were calculated from the
slope of the curve.

(13)

In all cases the cracks accelerated after an initial period of constant
speed U = 1.6 to 9.0 ft/sec (Region A-B in Fig. 9b), which terminated

* Crack-velocity measurements described in the next section indicate that the larger
fracture strain is encountered when the crack speed exceeds 1.6 to 9.0 ft/sec. According
to the calculations, 1t is in this velocity range that the crack-tip strain rate first ap-
proaches 10% sec ™'

F The limit U ~ 0 (rather than (7= 0) 1s uscd to draw attention to the fact that, during
stable crack growth, the velocity is small but finite. It is not clear whether the change in
€ from 0.24:66+1.10 is continuous at interme diate speeds 0 < U < 1 ft/sec.
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Fig. 10. Comparison of measured and calculated ductile crack speed on steel foil at
different load levels. Computer calculations are for a plastic zone divided into 8 intervals.

when the crack attained a half-length ¢ = 0.22-0.27 in. The stress-
intensity values corresponding to these lengths are K = 67 to 78 ksi
Vin., (K = TVrc), and this is consistent with K. = 50 ksi Vin. at the
onset of crack extension and €} = 1.10 if the subsequent enhancement
attending stable crack growth * and the initial acceleration are taken
into account (see the last row of Table 1, K. = T* V¢ refers to the con-
ditions at the onset of propagation). In other words, the crack does not
* Note that the steel foil displays some stable crack growth amounting to about 10 per-
cent of the mmal crack length before unstable propagation begins [11]. This region of
h_is_n e.model, which becomes unstable as soon as the

vel difference observed between the onset
opagation is relatively small, about 10 per-

b
gely X pe t atter. Consequently, slow growth is not a
c1 S CC (10
Ol L iy
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begin to accelerate (Region A-B in Fig. 9b) until the stress require-
ments for the larger strain are satisfied. This result, together with
metallographic sections taken through the fractures (Fig. 8), suggests
that the initial period of constant speed coincides with a change in
fracture strain from e = 0.24 to €¥= 1.10. Beyond this point, the
crack propagates with a constant value of € = 1.10. Itis this phase that
is amenable to analysis.

The motion-picture films provide speed values and the correspond-
ing instantaneous crack lengths. To simplify the presentation, each
crack-length-stress combination was reduced to a stress-intensity
value K = BT Ve, where B is the static finite-plate correction factor

[32]. The results are presented in Fig. 10 as a function Of%. Finally,
.

by taking K. = 53 ksi Vin. (an estimate of K, for €= 1.10, and U = 0;

see the last row in lable 1)~ and by ignoring the constant-velocity re-

gion, complications attending the change of €} are avoided.

Figure 10 shows that cracks in the foil accelerate continuously at
constant load. Although the data points display considerable scatter,
it is evident that results for diffierent stress levels overlap. This illus-
trates that the basic equivalence of T and V¢ established for stationary
cracks also extends to running ductile cracks. The origin of the scatter
has not been explored, but it seems likely that it is related to misalign-
ment of the foil in the grips, the problem of cementing them evenly,
and, possibly, slight differences in the thickness of the foil.

Finally, the question of temperature deserves comment. Although
the experiments were performed at room temperature, other work
[83, 34] has shown that nearly 100 percent of the work expended to
produce plastic deformation within the zone is converted to heat. This
is enough to raise the temperature of the plastic zone in the steel foil to
about 400° C under adiabatic conditions. A crude estimate of the heat
conducted to the cold material on either side of the plastic zone as the
crack propagates suggests that the peak temperature rise for the
highest speeds is substantially less than 400° C.7 Furthermore, the rise
will occur near the tip of the crack, where rates in excess of 1110 sec™
are experienced and where the linear rate dependence is obeyed. Re-
cent results of both Ferguson, Kumar, and Dorn [28] and Mukherjee,
Ferguson, Barmore, and Dorn [35] suggest that even a 400° C rise
would not influence the flow stress significantly in this strain-rate
regime.

= The value K. = 53 ksi Vin. is an estimate of the value of K. intermediate between the
values for the onset and end of stable crack growth, and corresponding to ¢ = 0.220 in.

7 Approximate calculations by N. Levy and J. R. Rice (Brown University. private com-
municationyh967)basedronpasmovinggDugdale zone 1 ¢m in length lead to temperature
rises from 25 to 100° C in the 100 to 1000 fps range of speeds for mild steel and 2024

Aluminum alloys. These calculations are based on room temperature values of vield
strength and thermal properties, with rate dependence neglected.
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CRACK-SPEED COMPUTATIONS

There are three distinct phases of the general problem that may be
considered: subcritical loading, critical loading, and unstable propaga-
tion. These are indicated in Fig. 11. The simplest situation, subcritical
loading, occurs when the crack has produced local yielding but no
rupturing, and this uses only a portion of the available information.
The critical loading case (in reality, the transition point between stable
and propagating cracks) is obtained by supplementing these equations
with a criterion for fracture. Finally, adding the strain-rate de-
pendence to the stress-strain behavior of material enables the moving
crack solution to be obtained.

From the computational point of view, in the most general case,
there are three more variables that must be specified arbitrarily. In the
static-crack case, U = 0. This leaves two free choices in the subcritical
case, i.e., T and c¢. Only one free choice can be made in the critical case,
either T* or c¢. Finally, in the dynamic case where U must be deter-
mined, two free choices, T and ¢, are again available. This results from
the fact that the rate dependence introduces just as many equations
as unknowns.

The relevant equations (see Fig. 11) were transformed into a set of
nonlinear simultaneous equations by subdividing the plastic zone into
N intervals. These equations were programmed for Battelle’s CDC
6400 computer. The technique used to obtain a solution for the dy-
namic problem is quite similar to that used for the subcritical and
critical loading problems, which are described in the companion paper
[11]. The portions of the computational procedure pertaining to the
dynamic problem are presented in Appendix B.

A comparison of a subcritical calculation with actual measurements
on the foil taken from [11] is shown in Fig. 5. These results are re-
produced to show that the calculations offer a good picture of both
the strain and the strain gradient near the crack tip. Since the fracture
criterion is based on the strain at the crack tip, the calculations also
reproduce measured values of 7% and K., the fracture stress and
fracture toughness; this is illustrated in Table 1.

In Fig. 12 are shown the individual values of €, €, o, and S in the
plastic region for each of five different crack speeds (each correspond-
ing to a particular crack length). The most important conclusions that
can be drawn from these results are that 1) the strain gradients at the
crack tip are relatively insensitive to crack speed and 2) because the
strain gradient is much steeper near the crack tip, the strain rates and
hencesthesflowsstressessaresmuchsgreater at the crack tip than else-
where. Thus, the model shown in Fig. 5 to be most accurate at the



113

Crack Propagation and Flow in Metals

“ampadord pruonvinduios oy jo vonmuasardal duewdydg 11 "8

I ANV O
NVILITIY
¥od NOILNTOS
JIWVNAQ

o]
AIVILIFEY ¥04
NOILATOS
ONIAVOT TVOILI¥D

I 4NV D
IVILICEY Y04
NOILANTOS ONIAVOT
TVOILI¥O-4NS

(11) uoraenby
§59213S MOTJ 9yl
3o @aduspuadag

218y uIRIIS

(€1) uorienby
UoTIIITIY
9anjoeaj

(z1) uotaenbyg
net
uTe13S-559138

(01 ® (8) suotienbg
suoTleloy
JuauwedeidsI(Q
-uieals

(g) uorjenby
suoy
o13seTd 8yl ut
sjuewedeTdsI(

(1) uotjenby
uoT3TPUO)
Ssaue3TUT]




114 M. F. Kanninen, et al.

-a[-
\ U=54 tps
- -t L \
A \‘H"“-——._
=
™~
03 T 2 3
1 ¥)
600,000 e — 300,000
(
|
|
|
5 400, ——————— 2000001, T sa o —
= -
© 200,000 00,0 1

Distonce in Front of Crack,(x=cC),in Distance in Front of Crock, (x=c),in
C) (d)
Fig. 12. Calculations of the influence of crack speed on the plastic zone generated by
a propagating ductile crack in the steel foil: (a) Plastic strain gradient, (b) Plastic strain-
rate gradient, (c) Flow stress gradient, and (d) Internal stress gradient. The calculations
employed N = 32 intervals within the zone, each about 0.007 in. wide.

crack tip is therefore most reliable in the region of greatest im-
portance.

The first of the above conclusions suggests that a simple theory could
be developed that relies on the fact that the strain gradient at the crack
tip is insensitive to crack speed. Such a representation will be con-
sidered later. The second conclusion must be qualified. Although the
calculations of plastic deformation within the zone appear to be most
reliable within about 0.050 in. of the crack tip, the computational
scheme is not valid at close proximity to the tip, i.e., within about 0.010
in. The difhculty stems from the approximation that the ductile-frac-
ture process does not weaken the foil cross section (b in Fig. 4b) until
€. = €}, at which point b goes abruptly to zero.* As a consequence S
goes discontinuously to zero and both ¢ and € go to infinity at x = c.
However, crack speed calculations are still possible because the stress
singularity is integrable, and this is discussed in Appendix B.

A comparison between the computed crack speeds and the experi-

# In real cracks the deterioration of the cross section is likely to occur over a small, but

finite range of strain [36]. The S-gradient will be steep, but finite and € will take on finite
values at x = ¢.
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mentally observed values for the steel foil is shown in Fig. 10. It can be
seen that although the computed values are consistently high, the
deviations are not large. This discrepancy could be caused by a number
of factors: the complications responsible for stable crack growth, and
the tact that the real zone shape, strain gradient, and constraints within
the zone are not faithfully reproduced. Greater precision cannot really
be expected. The model gives recsonable agreement with the measure-
ments and this can be regarded as indirect evidence that the ductile
crack speed is controlled by increased resistance to plastic flow at high
strain rates. ‘The fact that the experimental material was carefully
tatlored to match the model strengthens the conclusion, but does not
detract from its generality. The same mechanism can govern crack
speed in materials when the shape of the plastic zone does not conform
to the Dugdale model. Some of the equations derived in this paper will
then be invalid, but the general influence of the dynamic flow proper-
tics will be the same. Evidence along these lines is presented in the next
section.

CALCULATING FLOW-STRESS DATA FROM
CRACK-SPEED MEASUREMENTS

The dynamic problem outlined in Fig. 11 also offers the possibility of
calculating an unknown parameter of the strain-rate law when U, T,
and ¢ are known. This can be demonstrated with the help of a simple
analysis, developed in Appendix (., which is based on the following key
assumptions:

(1) The plastic-strain gradient is relatively insensitive to the crack

speed, and

(2) A linear rate dependence of the formY = Y, + Fe predominates.

The resulting expression is:

Ux—ﬁ—[’f—l] (14)

where U = crack speed
Y, = static yield stress
F = linear rate coeflicient

Ae . . . .
™ effective plastic strain gradient
K.=T Ve, and
K= T,V7e,.

‘The subscripts | and 2 refer to the values of 7" and ¢ at the onset of
cracking and at the velocity U, respectively.
For example, the appropriate values for the steel foil are:
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Fig. 13. Strain gradients observed in 0.00175 in.-thick steel foil and Yie in.-thick
7075-T6 Al under plane stress conditions. Results for the foil are taken from Figure
5 [11]. Results for the aluminum alloy are from unpublished work at Battelle on center-
notched coupons. The gradient shown corresponds to a stress level close to fracture, iee.,
K . . . . . .

X, = 0.95, and was obtained trom measurements ot a plastic rephica of the coupon sur-

.

face taken while the coupon was fully loaded.

Y, = 105,000 psi, F =25 psi-sec, and (2—;) ~ 20 in.™!
(see Figs. 12a and 13), or
2
Uft/sec) = 17.5 (—kK—_,— ]). (15)

As shown in Fig. 10, this simple expression offers a very good descrip-
tion of the experimental results. With this in mind the simple analysis
was applied to crack speed measurements in t%-in.-thick 7075-T6
aluminum reported by Kobayashi and Engstrom [6]. As shown in Fig.
14, (14) can be fitted to their measurements for velocities up to about
2000 ft/sec,* provided

. Y,
F=—he (16)
480 (——)
Ax
* Figure 13 illustrates that cracks in the 7075-T6 sheet attain a velocity of about 2000
K

2.5, ; accele with further increases in the stress intensity.

experimental problem of maintaining the
em to be connected with the Rayleigh wave
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Fig. 14. Comparison ol crack speed data and calculations. Data for 7075-T6 A1 were
reported by Kobavashi and Engstrom [6].
The value of Y, for 7075-T6 aluminum is ~70,000 psi. Consequently,
the cocflicient I can be determined from the crack speed measure-
ments once the gradient is known.

The evaluation of the gradient for 7075-T6 aluminum ilustrates
another interesting complication. As shown in Appendix C, the

)

quantity (b)
ant v

decreases as the crack acezlerates according to the relation

o
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Table 2

RELATIONS AMONG THE CHARACTER OF THE DEFORMATION
WITHIN THE PrLAsTIC ZONE IN Ts-INCH-THICK 7075-T6

2
2] .
ALUMINUM, THE PARAMETER <_> —, AND THE EFFECTIVE

Y/ b
STRAIN GRADIENT
Gl: &)
Condition Y/ b Ax
Plane stress zone >10.4@
Slowly growing crack in 7075-T6 8.2™ 2.5 in.71@
A1l at the onset of fracture,
K _
K. 1
Rapidly propagating in 7075-T6 1.5

Al, U= 2000 ft/sec and—g-= 2.3

Plane strain zone <l.3@ ~4() in.”1@

(a) Based on a treatment of stationary cracks given in [37].
(b) Measured by Kobayashi and Engstrom.

(c) Estimate based on (b) and Equation (17).

(d) From Fig. 13.

(e) Based on a treatment of stationary cracks given in [37]:

A, 26 .
(A—i) == e ~ 012 [37], €% ~ 0.006 in. [37)

tion from plane stress to plane strain [37]. Table 2, which summarizes
values estimated for 7075-T6 aluminum, shows that

(a) At the onset of crack extension plastic relaxation is predomi-
nantly plane stress (through the thickness).

(b) By the time the crack attains a speed of 2000 ft/sec, the relaxa-
tion in front of the crack is approaching plane strain.

Evidence that such a change actually does occur is presented in Table
3, which shows that the through-the-thickness strain diminishes as

the crack propagates.” The values quoted were obtained at Battelle on

a 7% in.-thick center-notched 7075-T6 coupon similar to the one tested
by Kobayashi and Engstrom.

* The fracture displayed by this coupon was predominantly shear with a narrow (~20
percent of the thickness) ribbon of flat, fibrous fracture in the center. It is possible that
the propagating crack front is not straight; the front in the center of the plate (associated
with the flat fracture) leading the front near the plate surface. In that case, the un-
broken portion of the plate behind the leading edge of the crack is less than half as thick
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Table 3

INFLUENCE OF CRACK PROPAGATION ON PLANE STRESS
(THROUGH-THE-THICKNESS) DEFORMATION IN A 14-
IncH-THICK, 7075-T6, CENTER-NOTCHED COUPON

Distance Propagated, in. 0 0.005 0.050 0.100  0.250  0.500  0.750
. . K - -
Relative Stress Intensity, a 1 .03 1.07 1.13 1.29 1.53 1.8
.
Estimared Crack Speed. ft/sec® 0 20 70 140 270 65 1030
Maximum Through-the-Thickness 11.0 6.9 6.0 4.8 5.4 5.9 5.7

Strain, percent ™

(a) Calculated from U = 480 [(I\A>_ — 1].

(b) Measured.

Results quoted in Table 2 also indicate that the change from plane
stress to plane strain relaxation within the zone could produce a larger
strain gradient. The results in Table 2 suggest that the gradient at

U = 2000 ft/sec and kl_{ = 2.3 should fall somewhere between the val-
- [Ae\

ues for plane stress and plane strain. 2.5 in. 7" << \ax/ << 40 1in.7 Com-
x
bining this with (16) gives the result:

5 psi sec > F > 0.3 psi sec.

Ax
nearer to 0.3 than 5 psi sec.) These two limits define the shaded band
in Fig. 6, and are consistent with other measurements for aluminum
[34]. Finally, it should be noted that the two limits imply an effective
strain rate between 6 - 10* to 9.6 - 10° sec™'. These values, while specu-
lative, serve to delineate the upper bands of the strain rate regime in-
volved in ductile crack propagation for aluminum.

(Because <E) is probably closer to 40 in.7', the value of F is likely
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APPENDIX A

A DYNAMIC SOLUTION FOR AN ELASTIC-PLASTIC CRACK
PROPAGATING AT A CONSTANT SPEED IN AN INFINITE
SHEET SUBJECTED TO A UNIFORM TENSILE LOAD

Consider a crack of length 2¢ having thin plastic zones of length ¢
(pictured as extensions of the crack itself) at each of its ends in an in-
finitely large sheet. The overall length of the crack and the plastic
zones is 2a. The sheet is subjected to a uniform tensile loading at
infinity in a direction normal to the crack line. In the general case the
crack is supposed to be extending uniformly at a speed U.

The solution to this problem can be obtained by superposing the
solutions to two subproblems which will be called problems 4 and B.
In problem A4 a crack of length 2a is propagating at a speed U in a sheet
under a uniform load T at infinity. In problem B, a uniform tension Y
acts upon the portion of the crack faces in the intervals of length ¢
directly behind the crack tips. The length of the free crack is 2¢ and it
is propagating at a speed U, but here the tractions at infinity are sup-
posed to vanish.

The solutions to problems 4 and B will be combined such that the
singularities at the crack tips in each problem will cancel each other.
A condition which insures finiteness of stresses will result just as in
Dugdale’s [1] stationary crack solution. In addition to the finiteness
condition, the boundary conditions for the combined problem are, at
y=0

0 e+ Ut| < ¢
”z[y c<|xxUt|<a (A-1)
Toy = x+xUt|<a
and, at infinity
o,=T
P —) (A-2)

Equivalently, the region under consideration can be confined to the
upper half plane in which case Equations (A-1) must be supplemented

122



Appendix 123

by the equations
V=T =0 a <|x = Ut|.
The equations of motion in plane elasticity are:
do, It Ju
ax oy Par
7,y o,  Pv
ax ay

(A-3)

while the constitutive equations for plane strain are

o . du du
(TI:()\-J-Z/.L)T’C*}-TV

dv  du

o, = (At 2u) P (A-4)

ox
and
Ju , dv
= -+ )
Ty = H (6)' 6x>

Radok [7] has shown that when disturbances move at a constant
speed U parallel to the x axis a general solution to Equations (A-3) and
(A-4) can be obtained by introducing the transtormation

f=x=+ UL

The solution so obtained is in terms of two analytic functions of the two
complex variables

=&+ 1By
and
2= &+ 1By
where
Bi=1—U%Up? (A-5)
and

B2=1— U3

Here, U, and U, are, respectively, the velocity of dilatation waves and of
distortion waves in an inhnite medium. Radok’s solution in terms of the
derivatives of the arbitrary and anabviic functions F(z) and Fu(z,)
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o, = (1+ B,%) Re {Fi(z) + Fi(z)}

o+ 0y ==2(8 — B°) Re {Fi(x)} (A-6)
— " (1 + B‘ 2)2 "
Ty =2 Im {BlFl(Zl) + 4‘3; Fz(Zz)}

and
pu = —Re {Fi(z) + 3(1 + B)F3(z)}

2
po = tm Bt + E 2 i)
B:
where the prime notation indicates differentiation of the function with
respect to its argument,

The solution satistying the Equations (A-3) and (A-4) and taking on
the boundary values given by (A-1) and (A-2) will be obtained by super-
posing the solutions to the two subproblems. The boundary conditions
for problem 4 are at y =0

O'yZT.ry:O |¢f|<(t
and, at infinity
o, =T,0,=71,,=0.

The solution satisfying these conditions is given by Radok as an exam-
ple of the application of Equations (A-6). His result can be written as

" Afz
Fi(z) = [A;k +Bf — ﬁ]
1
and (A-7)
" . A~*Z-
Fite) = | A + By — 2]
2
where
. T R
Af =3 (1+ )
A* — Z 43132
: D1+ B,2 (A-8)
. T
Bf=—c—sr—-
! 2([3’12 - Bzz)
By — T T

1+ 62 28— B2
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and
D=48.8, — (1 + B2).
The boundary conditions for problem B are at y = 0.
) [O f<e
T c<lél<a
Ty =0 €] <a
and. at infinity
Ro,., Ro,, R7,.,— O
as
R= V43— =

The solution satisfying these conditions has been obtained from Equa-
tions (A-6) by Kanninen using a technique given by Sneddon. His
result is

P = B [ oz, i 2w Va? — ¢ —icVz?—ad?
Nz) =By | ——=—7w+ilog - - -
2,2 —a® uVa:— A+ icVz?—a®
and (A-9)

Fi(z)=B [ o +i1 ZZ”“Z_fz—ithZJ—az]
olZs) = w | T7TVTF/—/—— 7T o
o LVt —a? t108 V@ — A+ eV, —a®
where
Y S
B, =5 (1+ 82
(A-10)

B — Y 4B,
2T @D (1 + B2

and

c
a=2 cos ' —
a

Combining the solutions to problems A and B gives, from Equations
(A-7) and (A-9)

= (A¥ B y
1(z1) (A7 1 1 W 108 Z,m‘{” icm

+ (aB, (A-11)

) Z1
—_ Al) PO S
Vz2—a?
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and

2zVa:— ¢t —icVz,? —a?

Fi(z) = (A5 + Bf — mBy) + By log ~ =g s

. 22
+ (aBZ — Azx) —Z—z_—az
VZy

The first two terms in each equation are nonsingular while the re-
maining term is singular at z; = z, = #a. The singularities can be com-
pletely removed,* therefore, by simply setting

aB, = AF¥
af3, = A¥.
Upon substituting from Equations (A-8) and (A-10) these two singu-

larity cancelling equations are found to be identical.

¢
— = cos
a

ol
~I~

(A-12)

This is exactly the same result obtained by Dugdale in the static prob-
lem. It may be noted that Goodier and Field similarly obtain a finite-
ness condition in a dynamic problem which is independent of the crack
speed, but their solution, which is based on Craggs’ semi-infinite crack
solution, otherwise differs from the above.

The final form of the equations for the combined solution can now
be written out.

uVa:—c —icVz? —a?

Fi(z;) = C, + iB, log

WVE—CtiVa—@
and (A-13)
Fi(es) = Cy + iB, | nVa* — ¢ —icVz? — a*
202p) = Gy D, 10

where
C,= A{ + Bf — 7B,
C,= A5 + Bf — B,
or, using Equations (A-8) and (A-10)

S S r
C,=(T-—-Y) D 2(8,2 — B2
and 48,8 1 1 (A
C=U-Dyaigs ™ (1 T B 2B - Bf)> "

*# ]t is still possible that the stresses may become infinite at some particular crack
speed, e.g., the Rayleigh velocity.
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The displacements are related to Fi(z;) and Fi(z,), which can be ob-
tained by integrating Equation (A-12).
Vi —E —icVz® — &
V@& — A+ eV —ad
Va2 — 2+ iVzI— az} (A-15)
A-15
J Va2 —2— iV — &

Fi(z) = C,z, + iB, {21 ]og

+clo

wVat — = ieVi, — @
V@ — E + eV — &
o V{13~('3+1‘\/:f*a:}
¢ log - 5 S5
5 Vad — 2 — iV, —d*
By substituting Equations (A-13) and (A-15) into Equations (A-6), the

stresses and displacements can be determined everywhere in the sheet.
In particular, on the crack line where z; = z, =

0 €1 <c
Y c =lél=a
oy,
' 92 & 2= a =&
TV a2 = _16
tWYtan (\/fz—(('-’ (A-16)
T.y=0
and
) EVE—F—cVad—& Va*—c+ Va2 — &
Elog — ——— | +clog —— R
ﬂ:‘__)z () EVaE—c>A+ cVar— & Va2 —2— Ve —¢&
ComET €l <a
0 €| =a
where

Bi(l = BA)(1 +v)
4:81/82 —(1+ :822>2
It 1s readily seen that the surface tractions on the crack line are inde-
pendent of the crack speed and are just equal to their static values.
Apart from the presence of the factor £ (U), the same is true for the
displacement normal to the crack line. It can be shown that the static
value is achieved in the limit as follows. Substituting Equation (A-5) in

(A-17) gives
) = U U2ANT — U3UZ (1 +v)
AV U VI - U U — (2 — U U2

AU) = (A-17)
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and, for U < U, < U,

[1—3x3(UIULI(1 + v)

ZU)= 2(1 — &%) — 3 — & + 3NU/IULY

(A-18)

where k = U,/U,. Noting that

11—=2p lane strai

5 17—, Planestrain
K=

% (1 —v) plane stress.

Equation (A-18) becomes upon setting U = 0
I —»* plane strain
Z(0) =
1 plane stress.
Thus, the normal displacement reduces to the static solution as
U — 0 (cf. Goodier and Field). Note that just as in the static case,

plane stress can be obtained from plane strain by appropriate changes
in the elastic constants.

APPENDIX B

DESCRIPTION OF THE CRACK-SPEED COMPUTATIONS

The Basic Equations

Consider that the plastic zone is divided in N equal intervals and that

S takes on the constant value S; in the i interval,i=1,2, - - - , N. For

convenience, set S, = 0. Then, by simple superposition, the condition

that guarantees finite stresses [Equation (A-12)] in the simple theory is
2 Al Ci

r=— > (S; — Si—y) cos™! ” (B-1)

=1
while the normal displacement [from Equation (A-16)] is

2 L(U) &
o0 =27 S (5, 5, e ) (B-2)

i=1

where
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=+ Va2 -3
@& — = Va>— 2
(B-3)

(I"(“"( (l"_\"

e )= log | =

‘ + ¢ log

If x; denotes the midpoint of the " interval and it v; = v(x;) then

2 /(C) 3 , .
v = 2 Sy =12, N (B-1)
where
Uy = lep. x)).
In order to relate the S;’s ro the v’s we also have
€ =—log (I — Bv) (i =1.2.--- N (B-3)
and
S; = o; exp (—¢) i=1.2.--- N (B-6)

where o, = ole;. €) 1s given by the stress-strain rate behavior of the
matertal.
The strain rates are determined by the relation

de _,, de dv
dx dv dx

or, using Equations (B-3) and (B-5)

© BU A(U) _
-7 > (S — S \ ‘=1.9. ... N (B-7
T 1 _B"(’J' E 1] i l)dl 17 \ J 17 Za ) \ ( )

=
where

éi:

(B-8)

The Computer Program
o

The basic equations programmed for Battelle’s CDC 6400 computer
are Equations (B-1), (B-4), (B-5), and (B-7). These constitute a system
of 4N + 1 nonlinear simultaneous equations in the 4N + 4 Variable“
S S S Vs Usy e e ey Uy €15 €ny oo, Eve €10 €y L., Ev,Ca, T and U
To obtain a solution, therefore, three quantities must be specified.
For the static crack U = 0. Then, either ¢ and T or ¢ and €, are pre-
scribed. In the dynamic problem ¢, T'= 7T, and €, = €¥ are the three
given quantities where 7% is the load that gives the critical-crack tip
strain at the inital erack length.

The key idea in the dynamic crack computation is that by fixing (
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the procedure becomes identical to that of determining 7" given ¢ and
€, in the static crack computation. Thus, using the method of false
position, the value of U corresponding to T% can be determined arbi-
trarily closely. The details of the computational procedure designed
tor static cracks are given in the author’s companion paper.

As in most nonlinear problems it is essential here to have a close
initial estimate if the procedure is to converge. To provide this the
computations for a number of crack lengths were performed sequen-
tially beginning with the static crack. In this way the initial estimate of
the solution for each individual crack length was provided by the previ-
ously determined values of the displacements together with extrapo-
lated values of a and U. With these values, the ¢’s, the €;’s, the o;’s, and
the S/’s are, in turn, computed. New values of a, T, and the v;’s are com-
puted and the cycle repeated until the change in T from one iteration
to the next is suitably small. Then, T is compared with 7%, U adjusted
appropriately, and the computation repeated.

Results of Computations

In the computational procedure outlined above N, the number of
increments into which the plastic zone is divided, is selected arbi-
trarily and not changed during a particular run. Because there is no
physical basis for choosing N, the only way to determine whether it is
sufhiciently large is to compare the solutions obtained using different
values. Such a comparison is shown in the following table.

Table B-1

CoMPARISON OF CRACK SPEEDS COMPUTED USING
DirreRENT NUMBERS OF POINTS IN THE PrAsTIC ZONE

U, ft/sec
c N=3§8 N=16 N =32 N =064
0.110 0 0 0 0
0.165 1.2 1.8 2.1 2.4
0.220 16.5 17.9 18.7 19.2
0.275 26.1 28.0 29.2 29.9
0.330 34.2 36.6 38.2 39.3

It is apparent from these results that the computed speeds are con-
verging,-although not rapidly. It should be noted that the CDC 6400
time required (approximately 3 sec for each crack length when N = 8)



131

Appendix

(1- 2IqB.L 295) 995/3 G§—F¢ = .7 puv "'l =3 18d )00°gL = [ UL 060 =2 10] A1e SUOLR[NOfEd dY T, el
ueng (q) pue 'ssa.ns (Ruaaiu] (B) sdn Yori Juaagip a1 aeau s1nsal pandiiod 941 uo d71s [EA1UL JO 1943 33 Summoys sajdwexy *1-q 811

(q)

v N

ot

oz

ors

j-208 '3

(e)
uotx
or o 650 B0 150 9% 0 X »E0 £50
[ _ “ .
| | |
|
| \-w.z
|¢ﬁ"-ITI—
| | ——
| | | ==
| 91z N
f —t 2 s N~
| | _
| 7 ¥a:N




132 M. F. Kanninen, et al.

roughly trebles as N is doubled so that the precise determination of
these values is unwarranted at present. In retrospect one reason for
the slow rate of convergence is probably a result of setting €, = € be-
cause the location of x;, the point at which ¢, is measured, depends on
N (i.e., x, = ¢+ ¢/2N). Thus, € at x = ¢ varies with N and only in the
limit is €(c) = €.

A second noteworthy point is that without further refinement this
analysis is not able to predict the strain rate at the crack tip. This is a
consequence of imposing a discontinuous § distribution since at the
edges of each interval the displacement curve has a vertical tangent.
(It is for this reason that the strain rates are measured at the midpoints
of the intervals.) The values of the strain rate near the crack tip com-
puted for different values of N are shown for a typical case in Fig. B-1.

Because S increases with €, the results shown in Fig. B-1 indicate
that the values of § at the crack tip similarly increase without bound as
N is increased. That this is actually the case is shown in Fig. B-1.
Here it can be seen, however, that in spite of this the average value of §
over the entire plastic zone is not changing significantly. If this were
not the case the crack velocities would not converge.

APPENDIX C

A SIMPLIFIED ANALYSIS OF CRACK SPEED

A simplified analysis of ductile crack speed can be derived with the
aid of the following assumptions:
. . . Ae . . . ..
(1) The strain gradient near the crack tip, A s relatively insensitive
to crack speed, U. This assumption receives support from the

present computer calculations (see Fig. 12a). Accordingly, the
plastic strain rate, €, is

¢= (i—:) U. (C-1)

(2) At high strain rates a linear rate dependence dominates; other
rate laws can be neglected:

Yo=il', + I'¢ (C-2)

where F is the linear strain [rate coeflicient.
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(8) The crack tp strain, €, is a single-valued, rate-insensitive func-
tion of displacement and is constant during crack propagation,
L.e., vi= constant. Further, the crack tip displacement can be

T3¢

Y
form of Equation 3 valid when 77/Y < 0.7. The term P is a con-
stant, Y is an average flow stress. and changes in sheet thickness
are neglected. This relation for ¢, is also valid for plane strain.

These two assumptions require:

(1)), (1y)c,

}/N = )/ (( ‘_5)

approximated by the relation .= I’ =, which is a simplified

where T, ¢;, and Y are values of stress, crack length, vield stress,
the instant the crack begins to extend, while 75, ¢,. and ¥ are the
relevant values tor a crack traveling at a speed U. Defining
K. = T,7c, and K = T, Ve, leads to

E_E C-4
Y. ¥ (C-1)
or

K\ _ (Ko (KoY .
(\?) - (_T) ) (\}_’\) ’ (C-5)

Finally, combining Equations (C-1). (C-2). and (C-4) gives
U= f [K2 1] -6
=~ K2 (C-6)

=




DYNAMIC MECHANICAL BEHAVIOR OF

METAL AT THE TIP OF A PLANE
STRAIN CRACK

J. M. KRAFFT

Naval Research Laboratory
Washington, D.C.

ABSTRACT

Although the stress intensity around a crack is continuously varying in the elastic
singularity, in real metals the pattern breaks down at the tip across discretely sized re-
gions of stress relaxation. Within these regions, conditions of stress, strain, and strain
rate can be characterized as uniform and equal to the point value in the singularity at
the distance equal to the region size. High strain rate within this zone can be attained by
crack movement, or by rapid loading of a stationary crack. Fracture strength is largely
governed by the triaxial plastic stability and size of these regions. Determinations of
plastic stability from dynamic compression tests correspond nicely to speed variations
and temperature-wise trends in fracture strength in two ferritic steels.

I. INTRODUCTION

The hypothesis which we attempt to explain and then to demon-
strate in this paper is one of fracture-strength. It is not necessarily nor
even usually the same as one of fracture-separation, both being but
stages of the total fracture process. In most structural metals, the
separation event commences only after substantial plastic deformation.
At the tip of a tensile crack, this deformation results from tensile ex-
tension. The maximum strength obtainable in tensile extension is at
the point of tensile instability; for example the ultimate strength of the
ordinary tensile test. Correspondingly the maximum strength, or stress
intensity factor, which a crack can sustain prior to fracture is just that
required to produce local tensile instability. Large plastic strains may
follow the establishment of tensile instability before the physical
separation can commence. But this occurs without application of addi-
tional loading but rather by the contraction with load relaxation of the

134
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distended metal adjacent the region of tensile instability. It is this inter-
mediate stage of deformation, uncoupled by instability from the
measurable loading, which ordinarily separates the event which deter-
mines mechanical strength from subsequent fracture separation as the
fractographer may observe it.

Identification of fracture strength with tensile instability means that
the one is a measure of the other. In the context of this Symposium,
one can, in principle, measure dvnamic tensile instability with a dy-
namic fracture test. However, at the present state of this art we con-
sider ourselves fortunate to make the converse connection, i.e., to
measure dynamic tensile instability in a rapid plastic flow test and then
from it predict the fracture behavior. High strain rate at the crack tip
can be produced either by rapid loading of a stationary crack, or by
rapid crack velocity with fixed crack-loading.

The connection between fracture strength and tensile instability
has been eminently although infrequently proposed in past decades.
Read, Marcus and McCaughey in 1947 [1] noted a correlation between
impact fracture strength and the strain hardening exponent n eval-
uated in slow compression. Although they associated the effect with
adiabatic shear instability proposed earlier by Zener and Hollomon [2],
it might as well have been related to the tensile instability strain with
which it can also be identified

In 1952 George and LaTorre [3] at NRL made observations of crack
extension in very thin zinc foil. They observed crack extension by the
growth and coalescence of holes nucleated in advance of the crack tip.
Even with such obvious ductility, their cracks eventually became un-
stable and progressed rapidly across the sheet without increase of load.
Irwin described this behavior to Orowan [4] who in turn reasoned that
the fracture instability could be a result of tensile instability in the liga-
ments formed between the holes. The effect of specimen compliance,
in analogue to a soft testing machine, he reasoned to account for the
onset of instability close to the maximum strength point.

Fracture strength in the presence of a dominant flaw is generally
directly related to the distance or size scale to which yielding, then in-
stability, is sectioned off by obstructing free surfaces. In the case of thin
sheets, the plate surfaces are these obstructions; the yielding and
plastic flow tends to scale to the dimension of thickness. In thicker
plates, where most of the crack tip is remote from the free surfaces, a
homogeneous defect structure of the metal may provide the largest
available free surface separations. The fracture strength K;. then be-
comes independent of plate thickness, a convenience utilized in experi-
ments described here. It is conceivable that under such high constraint
the fracture-separation might occur and thus set the fracture-strength
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before the tensile instability strain is reached to set it. But this does not
appear to be the case. In rate sensitive steels under the most brittle con-
ditions of low temperature and high strain rate, we observe [5] a direct
correspondence between fracture-strength K;. and the strain harden-
ing coeflicient or tensile instability strain n.

This invariant proportionality between K,. and n was first inter-
preted as indicating an invariant process zone cell whose uniaxial ten-
sile instability governs the plane strain fracture strength. But n is only
the strain for tensile instability, not for rupture. As with Orowan ten
years earlier, Williams and Turner [6] reminded NRL experimenters
of 1964 that specimen compliance could reduce the instability strain
requirement to that for maximum uniaxial strength n and even fur-
ther —to about n/2 —with the condition of maximum local triaxiality.
Before it became apparent as to how the triaxiality might be assessed
and used in these correlations, several and more extensive sets of data
showed a fairly satistactory correlation of K,. to n. Of particular interest
here is my study with Eftis [7] of speed/temperature eftects in a ship
plate steel and more recently [8] of the detailed speed sensitivity of a
gas transmission line-pipe steel. However, with recent attempts to
interpret environmentally assisted crack extension, the degree of local
triaxiality became apparent and a way of treating it in the analysis was
developed.

The re-analysis of the data on mild steel to allow for local triaxiality
is presented in this paper. The new results tend to support a literal
interpretation of the presence of specimen-like ligaments at the crack
tip, and the relevance of the fracture-strength to their dynamic
mechanical properties.

II. CONDITIONS FOR TENSILE INSTABILITY

In crystalline metals, it is well known that gross plastic deformation
is accommodated by the nucleation and movement of line and screw
dislocations. Moving rather easily at first in annealed metals, their
accumulation and interactions with the defect structure tends to re-
press their continued movement. The external manifestation of this is
a work strengthening or hardening of the metal with strain €,. The rate

of increase of hardening with strain, the strain hardening rate,
do - . . . . e ..
e 0 is a stabilizing mechanical influence. However, it diminishes
with the strain.

If the straining affecting strain hardening is of tensile extension, a
consequent-contraction-of areatends to cancel the stabilizing influence

of strain hardening. When the strain hardening rate has decreased
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with strain to the point where it is just cancelled by geometric contrac-
tion, a condition of tensile instability occurs. Expressed as a rate
process for the case of maximum lateral constraint [9], the instability
condition is

dode - dd _

TEFI‘_—G— 7 0 (1)

and the second derivative greater than zero.” where .4 is specimen area,
o and € its true (uniaxial) stress and strain, £ is ime, and the coefticient
2 is the maximum permissible plastic constraint factor derived by Wil-
liams and Turner [6]. Lateral contraction due to stretching reduces the

dA4 e

e . . .
area at a rate — = 2v4 — where v is the Poisson ratio.

dt di
A tvpical strain hardening behavior is diminution inversely as the
strain, the parabolic law

3
Qi

n

Qo
mi
ol

=6="2" @)
It parabolic strain hardening does occur, appropriate substitutions in
(1) show that tensile instability occurs when the strain cquals n/2.

III. TENSILE YIELDING AND INSTABILITY AT A CRACK TIP

It is now beyond reasonable doubt that Irwin’s stress intensity factor
K provides an extraordinarily successtul characterization of the
mechanical environment of an elastically stressed crack [10]. With it
the pattern of y-stress (o,) redistribution around a crack is simply dis-
closed as an inverse square root of distance singularity

(3)

where r is distance directly in advance (x-direction) of the crack tp
(8= 0). The K level is usually expressed as a function of nominal stress,
o. and (halt) crack length, «,

K= QoV7a 4)

where Q is a (near unity) constant of specimen and crack geometry for
which many solutions are available [11].

[t is necessary to determine the K level required to bring a ductile
ligament along the crack front to the point of tensile instability. As-
sume it occupies a distance dy ahcad of the crack tip, as depicted in
Fig. 1. Because of triaxiality the siress required to establish and main-

# Usuallv presumed. nonetheless NECESSaiy. as noted by P Rees, [mperial College.
London. in private communication.
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Fig. 1. Upon increases of the crack tip stress field K the process cell is formed by its
plastic yielding and then brought to tensile instability with attainment of the fracture
strength K,.. At K;. the potential yield zone has a substantial “outreach.”

tain plastic yielding over the distance dy is, after Williams and Tur-
ner [6], twice the uniaxial yield stress oy. The K level required is then
just twice what one might expect for uniaxial yielding, or a plane stress
plastic radius of dy.

o, =20y = Kr <= Ko ) (5)
Vomd, \  V2mdy

Plastic yielding levels both the stress and the strain singularity across
dr as depicted in Fig. 1. Thus conditions of strain and strain rate cal-
culated for the boundary position r = dy should apply throughout the
region closer than d.

As the K level is further increased above K, say by an increment Kp,
plastic extension correspondingly increases across dy. With this the
yield zone advances, effecting a more extensive blunting of the y-stress
singularity. Nonetheless the tensile strain across dr continues to in-
crease by at least

Kr
er = : (6)
EV2d;

We can say at least this value because plasticity solutions for analogous
situations [12, 13] indicate stronger than inverse + power singularities
as a result of the plastic relaxation. Thus to raise €p to a level required
for_tensile instability €., .Kp Do _greater, and possibly less than that cal-
culated by (6) for the elastic singularity would be required. Present
experimental data indicates that assumption of the elastic strain singu-
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larity provides satisfactory correlations, although the subject requires
further study. Thus for this paper we assume the elastic singularity,
summing elastic and plastic K required to elastically stretch and then to
plastically flow the ligament of size d.

_2()’+ _KE_'_K])—_ K, .
TE T ENOnd, EN2md,

(7)

Here o is the uniaxial flow stress after the plastic strain of interest,
which would be the vield strength of the work hardened material
rather than the initial value of (3). When K, becomes large enough to
establish the triaxial tensile instability strain, from (3). across dy (e =€),
then K, = K,.. the point of plane strain fast fracture instability and
maximum strength of the specimen.

As with the K, point, it is consistent with this tensile ligament model
to calculate the strain rate (as well as the strain) at the border of the
process zone, the distance » = dy in the “K-strain” singularity.

Differentiating (7)
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where V, is crack velocity. Experiments described later are designed to
bring into play separately and independently each of the two ingredi-
ents of strain rate at the crack tip: the first with a moving crack with
fixed K; (Sec. VI); the second with varied loading rate K on a fixed
crack (Secs. VII and VIII).

IV. ORIGIN OF THE INSTABILITY PROCESS ZONE

Consider next, three hypotheses relevant to the attainment of the
fracture strength:

1) In the path of the crack, any element which, by action of the
stress field and isolated to a size by the defect structure, is broughrt to
the point of complete tensile yielding must subsequently be extended
to the point of tensile instability;

2) Control of the fracture strength is passed upward in size by the
extension of yielding across larger scales of the defect structure, con-
sequent of the drawing-out to tensile instability of a smaller scale yield
zone; and

3)wEracturessirengthuissthe-K-field required to produce tensile in-
stability in the largest yield zone which can be reached in the “passing
upward” process.
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Fig. 2. When the “outreach™ of the vield zone from d, approaches specimen thick-
ness, the fracture mode transition transfers control of the process cell size from d; to
the thickness B.

To illustrate these hypotheses consider the most readily observed
“passing upward” process, the fracture mode transition from control
of strength by dr to control by plate thickness B (Fig. 2). To the exist-
ence of dr in control of the plane strain “fracture strength” K., Birkle,
Wei and Pellisier [14] have examined a series of Ni, Cr, Mo (4345)
steels of widely varied sulfur-content. Measured in tensile tests on the
metal tempered at 800° F, the tensile instability strain was not affected
by sulfur content. However, K;. decreased with sulfur content so that
the calculated instability distance (Eq. 7) * also decreased. Replicas of
the fracture surface revealed that the spacing of the largest inclusions,
later determined to be sulfides, was in direct correspondence with the
calculated dy; the greater the sulfur content the more there were.
These inclusions centered on the largest dimples. However, the actual
fracture separation was thought to have involved the coalescence of
much smaller, carbide nucleated, dimples. Presumably these did not
control the fracture strength, but passed it upward to the scale of the
larger sulfide inclusions. Since these were in fact the largest, their in-
stability set the strength.

The range or “outreach” of the zone of plastic yielding in the square
root singularity is (€./2€y)?, assuming the triaxial yield strength governs
both defect scales. This is approximately (rn/4e€y)* for parabolic harden-
ing. A typical outreach would be a factor of ten, one order of magni-
tude in the size scale of defects. It should be somewhat greater than (at
most4X) this'in the transition from'd; to B, as full thickness yielding is

* Actually the uniaxial n was used for €. in (7) but with such a high yield strength the
triaxial value of dg is also in correlation with the measured inclusion spacing.
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of reduced triaxiality. With given constraint, the outreach can be
widely varied by conditions of temperature, and strain rate, and ther-
mal condition, as these factors affect €. and e,.

If the outreach of the (potential) vield zone from dr becomes com-
parable to plate thickness, the familiar fracture mode transition is ob-
served. With fixed thickness it mayv be caused by increased “outreach”
with temperature. Or with fixed “outreach™ in strain rate insensitive
materials, it can result if the plate is made thinner. When the plate 1s
made thinner than d4; times the outreach ratio, the fracture strength
should decrease as the square root of the thickness which is then the
process zone size or a G.(= K.*/E) as the first power (Fig. 2), the effect
predicted by Bluhm [15] and by Hahn and Rosenfield [16] using a
strip vield model. If thinned below ;. the strength might again revert
to control by d; rather than approach zero with the thickness. although
test measurements are rarely accomplished with such thin specimens.

V. THE DEVIOUS CHARACTER OF FRACTURE APPEARANCE

In fracture of a plate for which the outreach of the yield zone is only
part of the (half) thickness, the center region of fracture will be con-
trolled bv dr while near the surface a larger plastic enclave musr he
drawn out to tensile instability. In the clevated K field required to
stretch the vield zone formed at the surface, the central (d;) crack
tunnels forward to a region of strain intensity equal to €. over the
range d,. Often the extent of the plastic enclave is revealed by the
fracture appearance, where the separation follows the elastic plastic
boundary, the familiar surface shear lips and center flat. However, it
is important to remember that the final separation need not take this
path. It often passes directly through the surface zone, lcaving the ap-
pearance of a flat, more brittle fracture.

When fracture is controlled wholly on the d; scale, there is no reason
to hope that nature will be more kindly disposed to reveal its secrets.
The fracture may follow the enclave of tensile instability and reveal
the largest dimples. But on the other hand, it may go through them in
any of a number of smaller scale, lower strength, processes. It may
cleave through grains of no particular symmetry relative to the d;
enclave, or even pass between the grains.

To sum up then, the path of separation is the final stage in the total
fracture process. It may, but it need not reveal a prior stage for which
maximum external stress was required. Thus it need bear no unique
relationshipptogthegfraciusegstiength. This should not discourage us
from looking. There should be a tendency for the separation to pass
through and thus reveal the largest inclusions. Or perhaps polished
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and etched sections would reveal their size and spacing in a useful way.
But we must be wary of deceptive appearances in fractographic exami-
nations.

VI. STRAIN RATE AT d; WHEN CRACK VELOCITY IS INDUCED BY
STRESS CORROSION

If the strength controlling ligamental cell is formed with establish-
ment of plastic yielding over it (ry = dy), then its instability can be in-
duced thereafter by the rate of surface attack. Usually, the sole source
of the areal diminution rate in degradation of tensile stability is the
Poisson contraction. For corrosion assisted cracking we can assume that
a surface degradation, such as actual dissolving of metal in a corrosive
environment, also contributes to the areal diminution rate. If we
assume ligaments of circular perimeter wd, suffer a surface annihila-
tion at a rate V, then their total rate of areal diminution will be

dA de

T 2vA 7 + 7d, V. (9)

Substituted in (2) and rearranged, the instability criterion becomes

éd7-=4/<2(_)6_— 1) (10)

where 6= ‘?9—‘: A= (m/4) dy? and ¢ = de/d.

If the crack loading is relatively constant, the strain rate can be ex-
pressed by using only the crack velocity term (II) of (8). Also dy can be
expressed in terms of K, and €., from (7), as well as direct a propor-
tionality between € and the instant level of K;; whence

Ve= 8VD/e<2%— 1). (11)

The right side of (11), save V), derives from the shape of an ordinary
stress strain curve. Suitable procedures for this are detailed in [9].
The actual crack velocity and thus the strain rate across dr will be
directly proportional to the surface degradation velocity, Vp. Present
evidence indicates that V;, is reasonably constant for a given combina-
tion of metal alloy and corrosive reagent. A typical example is shown in
Fig. 3 for a Titanium alloy immersed in salt water (6 Al, 4 Zr, 2 Sn, 0.5
Mo, 0.5 V of about 125 Ksi yield strength, K;. = 124 Ksi Vin.). Here
the time required for extension of an initial fatigue crack to complete
fracture was.measured-on.cantilever bend specimens. The mechanical
plastic flow properties were measured on compression plugs using a
diametral strain gage. With a summation of the thus derived Vp/V,
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Fig. 3. The aqueous reagent 3.5% NaCl induces the crack growth below K. with cor-
responding “dynamic” strain rates within d; of the order of 107!/sec in a Titanium allov.

ratio over the crack path to K. in the actual fracture specimen, the
fracture time, ¢, multiplied by the unknown degradation velocity V)
was calculated. A cross plot indicated a constant value V= 4.7 pin./
sec which provided a satisfactory match between measured and pre-
dicted specimen life.

The naturally occurring strain rate in the process zone is generally
rather low; however, it is truly dynamic in the approach to K;.. Some
shift in the sampling of strain rate could be obtained by using solu-
tions of differing reactivity rate V5. However. it has so far been difh-
cult to reduce scatter in the subcritical crack velocity measurements to
the degree required to precisely define mechanical properties of the
process cell igament.

VII. TEMPERATURE/RATE EFFECTS IN MILD STEEL

The fracture strength of mild steel has always been diabolically
evasive of quantitative measurement in a form suitable for stress
analysissslnsthespresentseontextythis difficulty can be attributed to the
extreme extent and variability, with temperature, strain rate, and
thermal condition, of the outreach of the vield zone from the process
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zone. The outreach ratio from dy to B should be roughly (nE/20y)? as
discussed in Sec. IV. For typical low speed values around the notch
impact test transition temperature of a mild steel (n = 0.3, E = 3 X 107
psi, oy = 50 Ksi) the outreach ratio is about 10*. A typical d; process
zone size is 107 in. in such steel. The product, 1 inch, means that a
plate twice this thickness will yield across its thickness. The fracture
strength with an inch scale process zone size is too high to measure
with reasonable specimens. At the same temperature, however, high
strain rates would typically reduce n by 3 and increase oy by 2, reducing
the outreach by a factor of 4* = 16, to 1 inch. Here a % in. would be
just through the d; to B mode transition at this temperature and one
0.4 in., Charpy thickness somewhat in the middle or at its transition
temperature, which is the result observed. The ratio of masses between
specimens of linear dimension in the ratio of 16 can be out of all
reason (=4000). It is thus that the prediction of fracture strength from
dynamic mechanical properties is sorely needed.

Our data for such an attempt on the U. of Illinois ship plate [7] is
perhaps the most extensive collection available today. It is reanalyzed
here for the fully triaxial instability model which was discovered subse-
quent to its publication in connection with the stress corrosion studies
of the preceding section (VI).

The steel supplied by Prof. W. F. Hall from their wide plate speci-
men #39 was % in. thick 20 points carbon 0.76% Mn semikilled. An ex-
tensive investigation of fast crack propagation, which need not concern
us here, had already been carried out on this material. Our tests for
plane strain fracture strength K. were carried out on § in. thick single
edge notch tension specimens. They were prepared by fatigue pre-
cracking, then loaded over a wide range of speeds in the NRL dy-
namic universal testing machine.* Assuming a stationary crack (V. = 0)
prior to the instability point, the K needed to estimate strain rate within
dr from (8) is obtained directly from the measured loading rate just
prior to fracture. These specimens were large enough for valid K.
measurement at —320° F (liq. N,), —220° F and at high speeds at
—120° F, as shown in Fig. 4A.

Compression tests for the instability strain, then regarded to be
simply the (uniaxial) strain hardening exponent n, were also run at
varied speeds. Here specimen size is no limitation so temperatures as
high as desired, and certainly through the d, — B transition tempera-
ture range, were employed. For clarity in the ratio matching of the
strain for tensile instability with K,., the data in Fig. 4B show only
temperatures for which there is valid fracture-strength data for
matching.

The estimates of n were all corrected to the isothermal condition of

* Now commercially available.
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Fig. 4. For a ship steel, fracture strength K, (4A) and the triaxial tensile instability
strain €. (4B) are shown vs speed for three low temperatures. —120, —220 and —320° F.

deformation. The quenching time from a body as small as the process
zone dy is shorter than the briefest possible time for fracture [17]. Two
methods were used and found in acceptable agreement as previously
shown in [18]. First, records of continuous compression to about 10%
strain were run. Those fast enough to be fully adiabatic were then
measured at the 3% strain point. The temperature sensitivity of flow
stress was also evaluated at this point. With this, and handbook values
of the specific heat, the rate of thermal softening could be putin terms
of an n value correction, which could then be added to the measured n
value. This procedure is detailed in [7].
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Fig. 5. The plots of Fig. 4 matched together indicate K;./e. = 610 Ksi Vin. and d; = 66
pin.

Alternatively the isothermal n value was simulated directly by divid-
ing the deformation into a series of short strokes, of about 2% each.
Following each abrupt arrest, specimens were unloaded, cooled back to
their starting temperature and then reloaded and strained. The “yield
point” upon each reloading was taken as a point of isothermal stress
for the strain accomplished in prior cycles. The procedure is detailed
in [8].

In ordinary mild steels, the fit of the parabolic strain hardening law is
fairly satisfactory. In such case the triaxial instability strain can be
estimated as

€. = 20/E + n/2. (12)

In retrieval of these data, the 3% flow stress was used for the elastic
stress (o) rather than the stress at the point of instability. Since here the
yield strain is small relative to n, this simplification introduces no
appreciable error. The values of €. are plotted against the prevailing
strain rate in Fig. 4B in the same logarithmic scaling as the K. vs K.

The matching of plots to test and hopefully reveal the ratio between
K. and €, involves superposition of the plots Figs. 4A and 4B with one
special constraint: The strain rate in the process zone must be held
identical with that of the compression test. This can be accomplished by
matching while maintaining the quotient of K, to K everywhere the
same as that of €. to € (assuming E = constant). To do this on the log
plots, we draw on each a line for which the ratio of ordinate to abscissa
scales is a constant, e.g., 1:1 on the plots shown. These “match lines”
are then maintained superimposed during the comparison, the only
permissible adjustment is a translation along the lines. If this is done,
any point common to both plots will meet the prescribed condition of
proportionality. Matching is discussed more fully in [19].

The superposition of Figs..4A-and 4B according to the matching
rule is shown in Fig. 5: the correspondence appears reasonably satis-
factory. It is entirely satisfactory if one anticipates the effects to be
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RACK LOADING SPEED - dK/dt ksi Tin/sec

Fig. 6. Converted 1o Ky, with the mateh ratio from Fig. 5, extensive €. data show the
general pattern of speed/temperature sensitivity for this mild steel. The lines are roughly
100° I apart.

discussed in the next section: namely that there is a marked structure
in strain rate sensitivity of the strain hardening rate in mild steel at
lower temperatures. Though suggestive of it, the speed variation was
not sampled finely enough here to clearly define it. The ratio of
K,./€., and thus of K to €, for the best match is 610 Ksi Vin. for which
the process zone size d; would be 66 pin. This is much smaller than in
the titanium alloy of Sec. VI for which d; was about 1600 uin.

If we dare now assume dy invariant, a grand pattern of the speed-
temperature variation of K;. emerges as displayed in Fig. 6. Augment-
ing the range of this prediction are some very high strain rate data
obtained with Hopkinson-Kolsky pressure-bar loaders, as described in
[20]. It will be noted that with increasing temperature the minimum
fracture strength occurs at higher speeds. These correspond roughly
to the strain rate for maximum flow stress, previously published in [7].
A peaking of fracture strength towzrd the lower speeds is suggestive
of onset of a strain aging effect which should also depress the tensile
instability strain and thus the fracture strength. Charpy impact K,
estimated at about 10> Ksi Vin./sec, is about as fast as one dare go be-
fore seeing an inversion in the temperature sensitivity of fracture
strength K. in Fig. 6.

In leaving this subject, it should be noted that still lower estimates of
fracture strength result if the process zone strain hardening is assumed
degraded by adiabatic heating. Freely running cracks should provide
this condition across dy. The appropriate comparison, which may be ol
interest tosstadents of this Symposium, is available in [7].
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VIII. SPEED-SPECTRUM OF STRAIN-HARDENING RATE

We began the last section by lamenting, for the practitioner of frac-
ture mechanics, the appalling extent of the yield zone outreach in mild
steel. But even if temperatures are low so this is not prohibitive, an-
other baffling characteristic is observed. There appears to be a strong
rate dependent variation in K,, and €., superimposed on the general
trends with speed and temperature as outlined in Fig. 6. With the usual
large gaps in speed sampling, this effect in the past could only be inter-
preted as data scatter. We now have collected a set of data profuse
enough to define some of the structure as distinct from scatter. An
X-52 line pipe steel was supplied by Robert Eiber of Battelle, Colum-
bus for this work. When these data were first matched [8] the uniaxial
instability criterion (e, = n) should have introduced a factor of two shift
in the strain rate from what we now believe proper. The data have now
been recalculated for the triaxial criterion with results described in this
Section.

This structure or “spectrum” in K. is seen as speed sensitive alone,
superimposed on general trends with temperature and strain rate. It
is apparently lost at room temperature, but is becoming evident at
—120°, and is clearly present from —170° F to —320°. Accordingly, to
display this structure we attempt to normalize out the background
trends —for data collected at within +100° F to a reference of —220° F.
This is done by assuming that the strain hardening exponent should
vary inversely as the flow strength level, and for these low yield strain
materials, so should e, triaxial. Thus both K,. and €. values were cor-
rected to —220° F by multiplying by the ratio of their 3% flow stress to
that at the actual test temperature. Most of the data was actually col-
lected at —220° F but this normalization procedure appears to bring the
data from adjacent temperatures into line.

The fracture strength K. data normalized to —220° F as shown in
Fig. 7A as a function of the crack loading rate K. Values of €, recalcu-
lated according to (11) are plotted against € in Fig. 7B, and normalized
to —220° F. The plastic flow data at other temperatures are omitted for
the sake of clarity. However, the trends are quite similar to those shown
for the ship plate steel of Fig. 6.

The matching rules for process zone to (compression) plastic flow
test consistency of strain and strain rate of Sec. VII are adhered to in
the match of Fig. 8. The coordinates are those of strain rather than K
as these should be the more basic and invariant from one steel to an-
other. There is naturally some experimental uncertainty both in
ordinates and abscissa matched. Itis thought that this uncertainty is far
less than the observed variation from the general trend. Moreover
there are general coincidences throughout the pattern of both fracture
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strength and instability strain data points. Although not impossible, it
is extremely unlikely that vibrations in the loading system could induce
these. The machine is running in opposite directions and differing
speeds for matched speed points.

Taking these variations seriously, a pattern emerges from the match.
One perceives two fairly well-defined major troughs at 7 X 107" sec™
and at 14 sec™'. Other structure is apparent but not well defined.
There is a suggestion of a subharmonic image in the approach upward
in strain rate to these major troughs. With the present matching
scheme, superharmonics are less clearly delineated than in the (im-
proper) previous matching with » [8]. This is helpful as there seems to
be no mechanism by which dislocations can be driven at supersonic
speeds so as to rationalize these. '

A plausible conjecture regarding the cause of these patterns, pre-
viously proposed in [8], involves the dislocations which move in the
lattice in accommodation of the strain. These could accelerate in re-
sponse to strain rate much more than they increase in number or
density. As they approach the shear wave velocity for given direction
in the crystal, one might expect a resonant interaction which would aid
the motion of the dislocation. They would move in tune with the
natural wave excursions of the lattice atoms with minimal disturbance
and damping. At factors of 2, 3, etc., lower velocity (i.e., strain rate)
corresponding subharmonic but weaker troughs could also be ex-
pected —as suggested by the data. But to attempt to drive beyond the
fundamental resonance, the facilitating mechanism might be suddenly
detuned, the rather abrupt walls of Fig. 8 suggesting such barrier in
restoration of normal work hardening rate (i.e., its €. equivalent).

We are straining a polycrystalline aggregate composed largely of
ferrite crystals of random orientation. This interpretation implies a
substantial degree of uniformity of density and velocity of the disloca-
tions accommodating the shearing of each. That the structure is seen
only at lower temperatures is consistent with the occurrence of mini-
mal dislocation damping in the temperature range of these tests [21].

The speed spectrum effects represent enormous variations in frac-
ture strength. They are thus of great practical significance. This should
help to justify as well as motivate their further scientific investigation.
It is certainly an area in which the plane strain crack provides a most
powerful probe of the dynamic mechanical properties of subject in this
Symposium.
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DYNAMICAL BEHAVIOR OF
DISLOCATIONS *

J. J. GiLmaN

University of Illinois
Urbana, Illinois

The most important single property of a dislocation is its mobility.
For a given applied stress, this can be very high as in a weakly bonded
crystal like talc, or very low as in tightly bonded diamond. The large
ratio (of order 10%), as well as the sensitivity of dislocation mobility to
impurities, temperature, other dislocations, etc., makes a simple uni-
versal description of it unlikely. However, certain limiting cases can be
described in a simple way and intermediate cases can be interpolated.
This will be attempted here.

Although it is often convenient to describe dislocations as if they
were lines moving through space, this is quite misleading because their
fields of action are not localized. The motion of a dislocation causes the
external shape of a body to change so a large volume of material can be
affected when the dislocation moves. This inevitably introduces
changes in the body forces and surface tractions which increase the
complexity of the behavior. In spite of these difficulties, however, some
reproducible patterns of behavior have been found and used to in-
crease both our knowledge of the physics of plastic flow, and our
ability to predict the mechanical response of engineering materials [1].

Other papers at this symposium will consider macroscopic responses
in some detail, so this one will concentrate on microscopic matters. The
plan is to review the work that has been done on the measurement of
dislocation mobilities, to present some interpretations of the observed
behavior, and to outline some predictions based on present knowledge.

DISLOCATION MOBILITY MEASUREMENTS

There are two general methods for measuring dislocation mobilities.
One uses direct observations of positions by means of selective etching
*This work has been supported by the Office of Naval Research (3985-06).
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ETCH-PITS SHOWING MOTION OF AN INDIVIDUAL DISLOCATION LOOP
IN A LITHIUM FLUORIDE CRYSTAL

Fig. 1. Schematic drawing showing motion of an individual dislocation loop in a LikF
crystal, as revealed by etch-pits.

[2] while the other uses indirect analysis of ultrasonic attenuation as a
function of frequency at very-high-frequencies [3]. The former allows
average velocities to be determined for large displacements (one
micron and up), while the latter allows the damping coefficient to be
determined for small displacements.

Methods for selectively etching dislocations will not be reviewed
here, but they have been developed for most crystals of interest.
Sclective etching before and after a stress pulse has been applied to a
crystal determines the initial and hnal positions of dislocations; thus
the distance, Ax moved during a stress pulse of known duration, Af 1s
found. Figure I illustrates an actual observation. The average velocity
is simply the Ax divided by the A¢, since experiments have shown that
the time spent for acceleration is very short (much less than one micro-
second).

Several means for producing stress pulses have been used. They
include dead-weight loading (>10 sec); levers with rolling weights
(>1 sec); electromagnets (>107% sec); bouncing of spheres oft speci-
mens (>20 X 107 sec); and the use of a torsion shock bar (>107% sec).
All except the last of these methods were first used by Gilman and
Johnston [4] and are described in their review.

For very short stress pulses the best present method is the torsion
shock bar developed by Pope, Vreeland, and Wood [5]. Itis illustrated
in Fig. 2. A section of a bar is pretwisted to produce a certain maximum
stress. At one end it is initially held by a metallic membrane, and when
this membrane is quickly broken by means of an electric current pulse,
a mechanical torsion pulse propagaies along the bar toward the speci-
men. The torsion pulse stresses the specimen as it passes through it
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Fig. 2. Schematic drawing of Pope-Vreeland-Wood machine for producing micro-
second torsional stress-pulses.

until it reflects at the far end. Then an unloading wave proceeds back
through the specimen and is eventually absorbed by the attenuator at
the opposite end of the assembly. A prime advantage of the method is
that sharply rising wave-fronts remain sharp because there is no
geometrical dispersion for torsional waves. Another is that the preload
is uniform so the pulses are quite flat between their front and back
edges.

The methods above have been applied to a variety of substances as
listed in Table I. Several sets of representative data are shown in
Fig. 3 for a variety of crystals. They will be interpreted in a later sec-
tion.

The indirect method for determining dislocation mobility is based on
a particular interpretive analysis of ultrasonic attenuation measure-
ments. This analysis is substantiated by a large amount of circumstan-
tial evidence and is generally thought to be a valid means for obtaining
the viscosity coefficient for a dislocation. The analysis begins with the
equation of motion for a dislocation line that lies parallel to the x-axis
and moves.in the xy-plane when acted upon by a shear stress o,,. Let
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Table I

MEASUREMENTS OF INDIVIDUAL
Dis1.ocATION VELOCITIES BY
MrANs Or SELECTIVE ETCHING

CRYSTAL REFERENCES
Salts

LilF ab oo

NaCl b

KBr C

KCl %

Rbl v

Cal, u
Covalents

Ge doe, fiqgot

Si d, h,gor

GaShb d

InSh d
Metals

Cu m

Fe—3% Si .1

Nb S

Ni P

w k

/n n

a. W. G Johnston and J. J. Gilman—]. Apol. Phys. 30, 129 (1959)

b, E. Y. Gutmanas, E. M. Nadgornyi, A. V. Stepanov —Soviet Phys.-Sol. St. 5, 743 (1963)
¢. V. B. Pariiskii, S. V. Lubenets, V. L. Startsev —Soviet Phys.-Sol. St. 8, 976 (1960)
d. A.R. Chaudhuri, J. R. Patel, and L. F. Rubin—]. Appl. Phys. 33, 2736 (1962)
e. M. N. Kabler—Phys. Rev. 131, 54 (1963)

f. O. W. Johnson-]. Appl. Phys. 36, 3247 (1965)

g. T. Suzuki and H. Kojima— Acta Met. 14, 913 (1966)

h. J. R. Patel = Discuss. Farad. Soc. #38, p. 201 (1964)

i Do F o Stein and J. R Low—]J. Appl. Phys 317, 362 (1960)

j-J. S. Erickson—]J. Appl. Phys. 33, 2499 (1962)

k. H. W. Schadler—Acta Met. 12, 861 (1964)

. D. F. Stein and R. P. Laforce—]J. Appl. Phys. 36, 661 (1965)

m. W. I Greenman, T, Vrecland, D. S. Wood—]. Appl. Phys. (August 1967)

n. ' Vreeland —J. Appl. Phys. (September 1967)

0. J. Coter and J. Weertman — Discuss. Farad. Soc. #38, p. 225 (1964)

p. R.W. Rohde and €. H. Pitt—]. Appl. Phys. 38, 876 (1967)

- S. Schafer—Phys. Stat. Sol. 19, 297 (1967

r. J. R. Patel and P. E. Freeland—Phys. Rev Leu. 18, 833 (1967)

s.  H. Guberman —submitted to Acta Met, (1967)

t.J. R. Patel and A. R. Chaudhuri—Phys. Rev. /43, 601 (1966)

u. G. AL Keig and R. L. Coble— Amer. Cer. Soc. Bull. 46, 359 (1967)
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Fig. 3. Velocity-stress behavior tor dislocations in several representative materials
(solid lines —edge type; dashed —screw type).

m be the effective mass of the dislocation per unit length; T its effec-
tive line tension; and b its Burgers displacement. Also, assume that the
viscous drag on it is proportional to its velocity, dy/dt. Then an equation
of motion may be written [6]:

2

d7y
Ix?

My 9
mea+ BT
at

or = bo., (1)

where B is the viscous damping constant that relates the driving force,
ob, and the drag force, Bu:

=2 )

v

For a line segment of length, /., and an applied stress of the form:
0,y = 0y sin wt where o is the angular frequency, resonance occurs at

the frequency:
T\
Wy = % ("“) 3)

m

in the absence of damping. For the case of large damping the loga-
rithmic decrement displays a maximum at a frequency [7]:

4)
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Table II

DamprinGg ConsTANTS FOR Distocarion MorTioNns

DAMPING CONSTANT = B(1(7* dsee "”‘2)

From vhf. ultra- From slope of linear
CRYSTAL sonic attenuation Ref. velocity-stress curve Ref.
LiF 16.0 b 7.0 a
2.5 ¢ —
2.4 e -
NaCl (2.5-10.5) d —
1.6 e -
Kl 3.2 b —
KBr - ~20) f
Al ~10.0 1 —
Cu 8.0 g 7.0 1
6.5 h —
0.8 b —
Zn — 7.6 J
Pb ~3.7(300° K) k —

~1.1 (60° K) _

a. W. P. Mason—]J. Acoust. Soc. Am. 32, 458 (1960))

b. T. Suzuki. A. Tkushima, M. Aoki—Acta Met. /2. 1231 (1964)

O. M. Mitchell—]J. Appl. Phvs. 36, 2083 (1965)

R. A. Moog—Ph.D. Thesis, Cornell Univ. (1965)

" Fanti. J. Holder. and A. Granato—to be published

V. B. Pariiskii, S. V. Lubenets. V. 1. Startsev — Sov. Phys.-Sol. St. 8. 976 (1966)
G. AL Alers and D. O. Thompson—J. Appl. Phys. 32, 283 (1961)

R. M. Stern and A. V. Granato — Acta Met. 10, 358 (1962)

W. F. Greenman, T. Vreeland. D. S. Wood—]. Appl. Phys. (August 1967)
T. Vrceland et al. —J. Appl. Phys. (September 1967)

W. P. Mason and A. Rosenberg—]J. Appl. Phys. 38, 1929 (1967)

W. P. Mason and A. Rosenberg—Phyvs. Rev. 151, 434 (1966)
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At frequencies higher than this (typically in the range 10-100 m—Htz),
the dislocations no longer vibrate like strings, but move more like rigid
rods; and the ultrasonic attenuation, «, approaches a limiting value:

_ B¢Tp
%= PR

(3)

where ¢ is an orientation factor that relates the coordinates of the dis-
locations to the coordinates of the sound wave, and p is the dislocation
density.

If the dislocation density is known, and T is estimated to be G6*/2 (G
is'the shear modulus);y thenBcanbe estimated. Numerical values are
listed in Table I1. For more details of this method, the reader is re-



158 J-J- Gilman

ferred to reviews by Stern and Granato [3] and Granato [8]. Values of
B can also be obtained from linear velocity-stress curves or tangents at
high velocities; and some values are listed in the Table for comparison
with the ultrasonic results. It may be seen that there is approximate
agreement.

VELOCITY-STRESS RELATIONS

A glance at Fig. 3 indicates that no general relation between disloca-
tion velocity and stress can be written. In some cases, such as copper
and germanium, a linear relation is observed; whereas in others, such
as lithium fluoride and iron-silicon, the relation is very non-linear.
There are some limiting cases, however, according to the type of crys-
tal; and to whether the motion is induced by stress alone, or is assisted
by thermal fluctuations. These cases are classified schematically in
Table IIL.

In crystals with non-local binding (metals, salts, molecular) the
energy of a straight dislocation is very nearly independent of its posi-
tion in the perfect structure. This is because the cohesive energies of
such crystals depend predominantly on the atomic volume; being
rather independent of the atomic packing pattern. The mobility of
such a dislocation is very high and the main source of drag that acts on
it is the viscosity caused by thermal oscillations. The most direct
evidence of this is that the drag seems to increase with increasing tem-
perature. Copper is an example [9] and the high mobility of disloca-
tions in it is indicated in Fig. 3.

In covalently bonded crystals, bond angles as well as bond lengths
strongly affect the cohesive energy. Therefore, the energy of a disloca-
tion tends to depend strongly on its position in the structure. This
makes its mobility low, and the viscous drag on it decreases with in-
creasing temperature because its motion is aided by thermal oscilla-
tions.

Table III

CLASSIFICATION OF DISLOCATION BEHAVIOR

Bonding

Local Non-Local
(covalent) (metals and salts)

Stress  Low (<G/100) Thermally Activated  Phonon and/or Free-
Electron Drag Limited

High (>G/100) Stress Activated —
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Fig. 4. Showing change in temperature dependence of hardness of silicon below its
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At low temperatures the thermal energy per vibrational mode
(3kT) becomes too small to assist the stress in moving dislocations and
their motion can only be caused by high applied stresses. This is clearly
shown by the dependence of the indentation hardness on the tempera-
ture as illustrated by data for silicon in Fig. 4. In the 400-800° C range
the hardness depends strongly on the temperature, but in the range
below the Debyve temperature, 6, = 390° C, the hardness is high and
nearly independent of the temperature.

The existence of stress activation at low temperatures in covalent
crystals is also indicated by the sharp onset of yielding that is observed
when a plane shock wave passes through germanium (or silicon) at
room temperature. When the pressure reaches 44 = 4 kbar fora (111)
wave in germanium, flow begins [10]. This corresponds to a hardness
numben-of 440-keg/mm’sso-the two-kinds of measurement agree.

The two limiting bond types are often mixed in impure metal and
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salt crystals to form a heterogeneous system that can have a complex
behavior.

A common feature for any crystal type is that the dislocation velocity
cannot increase without limit. It must saturate below the velocity of
sound if the stress field is continuous (supersonic motion is possible for
discontinuous stress fields). Therefore, if the limiting velocity is called
v*, the velocity can be quite generally written as:

v=v*Py(07y) (6)

where P, is the average probability for it to have the velocity, v* at a
given instant. P,, is a function of the stress and may also depend on the
prior plastic strain, the temperature, impurity concentration, etc.

Any general functional form that is proposed for P,, must satisfy at
least two conditions at the limits of high and low stress. Namely, the
value must be zero when o;= 0 and it must approach unity asymp-
totically for high values of o;. Of the functions that have been shown to
fit at least some of the data, only the one proposed by Gilman [11]
satisfies both of these conditions. Its form is:

o~DIos (7)

where D is a constant called the drag stress, and it is known to fit much
of the data, especially at medium to high stress levels. However, its
form at low stress levels is poor because its derivatives are compli-
cated. Also, it does not even approximate the linear velocity-stress rela-
tions that have recently been observed for Cu, Ge, and Zn. Therefore,
its applicability is limited. Nevertheless, it is believed that it is con-
sistent with the “stress-activated” category of Table III, and can be
derived from a physical model to be discussed in a later section.

Two functions that satisfy the conditions mentioned above, and also
have linear behavior for small stresses are:

1 —¢4c (8a)
tanh Ao. (8b)

The second of these has the largest range of approximate linearity and
therefore is suggested as a possible form for describing experimental
data. The following combination of (2), (6), and (8b) is suggested:

V = V* tanh (bo,/V*B) 9)

which reduces to V = bo /B when o, is small.

The forms of (7) and (8b) are compared in Fig. 5, and it may be seen
that (7) has the effect of shifting the transition between small and large
velocities to.a finite stress level. This is why it is useful for describing



Dynamical Behavior of Dislocations 161

T T T T T T T T T T
B [ I I I I [ I [ I ]
10— ———————= —
0.9}— _|
0.8— Tonh x —
0.7{— —
X 0.6 —
T o5l e —
0.4}— —
0.3 —
0.2 —
0.1 —
N 574 R T S A NN R N MU S
0 1 2 3 4 5 6 7 8 9 10 "

Fig. 5. Comparison of two possible probability functions for describing the stress de-
pendence of dislocation velocities.

materials with distinct vield stresses. On the other hand. (9) gives a
means for describing visco-elastic materials.

It seems likely that the behavior of almost any material can be
described by mixing (7) and (8b) into (6). This will give a three or four
constant equation that is probably the most simple form with adequate
generality. The mixed equation would be:

J7= ¥ tanh (Co) + e, (1)

This procedure may seem arbitrary, but it is consistent with the fact
that real materials are heterogeneous so that more than one mecha-
nism controls their behavior.

VISCOUS RESISTANCE TO DISLOCATION MOTION

When a straight dislocation moves along a glide plane, a velocity
gradient exists in the direction perpendicular to the plane. The
gradient is largest at the center of the dislocation and decreases rapidly
away from the center. If a means exists in the medium for transferring
momentum from the higher velocity regions to the ones with lower
velocities, then viscous losses occur which create a dragging resistance
to the motion. These losses can be described in various ways, but the
most familiar is the use of a viscosity (or fluidity) coefficient. Mason [12]
has considered the losses in the strain field of a screw dislocation from
this point of view. The rate of energy loss, diW, in a small volume ele-
ment, dV, 1s dependent on the strain rate, €, within it and on the vis-
cosity coefficient, n:

d=mié)* dl’. (1)
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Integration of this loss over the strain-rate field gives the viscous drag
force = W/v:

Jm = b*mu/8arrg? (12)

where 7, is the lower limit of the integration.

This result has two difficulties. First, it depends sensitively on r, as
might be expected since the strain-rate is greatest near the dislocation’s
core. This is not desirable because 7, is a somewhat arbitrary quantity.
Second, and most important, it neglects the effect of the velocity gradi-
ent associated with the “sliding” on the glide plane at the core. Yet, it is
this sliding that causes a dominant part of the total viscous loss. This
may be shown as follows.

The velocity gradient at the glide plane of a dislocation can be
evaluated from the displacements given by the solution of Peierls’
integral equation [13]. The x-component of the relative displacement
across the glide plane (for an edge dislocation) is:

u(x) = —7—[:_ tan™! (%) (13)

where w is the dislocation’s width, and x = vt. This relation does not de-
pend on the particular atomic force law which acts indirectly to deter-
mine w.

The expression for the velocity gradient at the glide plane is:

;1 (du) _ v (du
E_a(dt>_a(8x) (14
where a is the separation distance of the atomic layers.
If (13) and (14) are substituted into (11) and this is integrated:

4 279 40 2 292
p, =1 b f [1 + (_x) ] dx = n0*b*/maw (15)

mwra ) -» w

which may be compared with Mason’s result by settinga = w = b = r,
to obtain:

So = 8fu

so the power loss associated with the sliding along the glide plane is
large compared with the losses in the surrounding elastic field.

An expression for the damping constant, B, can be obtained from
(15) since Bv equals F, [neglecting the small contribution from (12)]:

B= (b—> 7. (16)

mwaw

A more difficult problem is the calculation of the viscosity coefhcient.
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At high temperatures (above the Debye temperature) it is valid to treat
m as the viscosity of a uniform fluid because the mean frec path for
phonons is of the order of atomic dimensions. At low temperatures the
detailed structure at the glide plane must be considered. The limiting
cases of localized and non-localized ‘bonding will be discussed here in
turn.

For germanium (localized bonding), high temperature data are
available [14] from which values for n can be obtained through (15).
Near the melting point these values might be expected to correspond
to the directly measurable viscosity of liquid germanium. Schafer
measured dislocation velocities as a function of stress and temperature
and found:

V= Booe ¥k (17)

where B, = 0.05 — 0.15 cm?¥/d-sec and Q= 1.62 e.v. At T, = 1230° K
N . . . . a
then, 8= (3.1 —9.4) X 107" cm®/d-sec. For a dislocation line. 8= —,
n
but kink motion controls the dislocation velocity in germanium and if
the kink concentration is Cj, the kink velocity is v,4/C,.. Thus 8 becomes
aC,/m. If the energy of formation of a kink is U, the kink concentration
will be: ¢~ U#*T. Equating 7 to the liquid viscosity, n,. a value for U, can
be obtained:

U= kT, In (a/Bmny). (18)

The liquid viscosity at the melting point as estimated by means of
Andrade’s equation is: 2.8 X 1072 poise which vields a value for U}, of:
0.68 e.v. This is quite reasonable since it is approximately one-half the
activation energy in (17), or the single-bond energy. Therefore it may
be concluded that the glide plane at the core of a dislocation in Ge be-
haves approximately like the liquid.

The analog of the damping constant, B, is bC,/8 which has a value of
~4.4 X 107* for Ge at T,,. Note that this is much greater than the
values listed in Table 11 for metals and that it increases rapidly with de-
creasing temperature.

Metals may behave differently, but this is not vet clear. For example,
the viscosity of copper at its melting point is 4.1 X 1072 poise, and with
1.2a = b = tw (16) would yield a value of B = 4 X 1073 d-sec/cm? if the
dislocation core behaved like liquid copper. The values of B observed
at room temperature are less than about 7 X 107* d-sec/cm?, or an
order of magnitude smaller than the liquid value. Furthermore, B
appears to increase with increasing temperature which contradicts the
temperature dependence.of.y-for liquids.

There is considerable doubt about the exact cause of the glide plane
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viscosity in pure metals (and pure salts), but the best proposal to date is
that of Mason [12] who attributes it to phonon viscosity. Thermal oscil-
lations in the solid are considered to be quasi-particles (phonons) that
can be formally described in terms of gas dynamics. A suddenly applied
strain temporarily leaves the gas in a non-equilibrium state which re-
laxes into equilibrium with the strained crystal in a time period given
by the thermal relaxation time [15]:

__3K
pC.Vy*

T (19)
where K = lattice thermal conductivity

p = mass density

C, = specific heat at constant volume

V, = average Debye sound velocity.

The product of this relaxation time and the modulus defect between
the relaxed and unrelaxed state equals the effective viscosity.

Mason’s value for the phonon gas viscosity in copper at room tem-
perature is: 1, =7 X 107® poise. In (16), again let bla= 1.2 and w=
4b; so B ~ 7 X 107 poise which compares favorably with the observed
values of 1-8 X 107 poise. Thus Mason’s theory correctly estimates
the viscosity.

STRESS ACTIVATION

Dislocation motion in Ge is clearly thermally activated at high tem-
peratures [14] but dislocations can also move in covalent crystals at
low temperatures if the stress is high enough (Fig. 4). Electronic con-
duction in solids provides a good analogy. At high temperatures, small
electric fields can induce the motion of thermally excited carriers in
pure crystals. However, conduction can still occur at low tempera-
tures provided a large electric field is applied. It is proposed here that
low temperature plastic flow occurs because kinks can undergo
quantum mechanical tunneling through the potential barriers that
block them. This is analogous to electron tunneling in the conduction
case.

In order to account for the creep of metals at very low temperatures,
Mott [16] proposed that dislocations that are pinned by other disloca-
tions which cross their glide planes can tunnel through the energy
barrier associated with creating a jog in order to move past the pinning
point. It is proposed here that this is a much more general phenome-
non; in particular that the tunneling rate for kinks controls the flow of
covalentlysbonded,erystalsyatlowgtemperatures [17].

There is considerable evidence that in covalent crystals (such as Ge
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and Si) dislocation lines move as a result of the motion of sharply de-
fined kinks along their lengths. That is, the velocity of a line depends
on the velocity of kinks along it, and the concentration of kinks (C,, =
fraction of atomic sites occupied by kinks):

g = C0;. (20)

The evidence is the strong temperature dependence of the velocity at
high temperatures where the phonons have atomic wavelengths. the
crystallographic shapes of dislocation loops. the close correlation be-
tween chemical binding energy and glide activation energy. and a de-
tailed calculation of the kink configuration by Labusch [18] which has
yielded 0.464 as the kink width.

Other authors [14] have argued that the rate at which kinks are
created (in pairs) is the rate controlling step. but kink creation should
be quite easy at a free surtace (where image forces cause the line ten
sion to disappear): vet dislocation lines that move near free surfaces in
silicon show no marked change of shape. Itis theretore concluded that
kink motion is the rate determining process.

At low temperatures. the concentration of kinks is determined bv a
balance between creation and annihilation rates [19]. If N is the num-
ber of kinks per unit length, and « is the number of pairs created per
unit length per second. then since the pair annihilation rate will be:
V.N?. the kink density changes at the rate (assuming a straight line):

dANdt = 2(a — ", N?). (21

The kink density saturates when dN/dt = 0. so the saturation density is:

. <a>1‘2
ne = 7,

and the dislocation velocity is (provided a < V,/d?):

v = blal)'"?. (22)

The quantities « and V. can be further resolved. The pair creation
rate equals the product of the number of possible creation sites (which
is 1/d where d is the kink length), and the pair creation rate at any site.
This latter equals the creation attempt frequency. v, times the success
probability, P.. Thus « is given by:

The kink velocity depends on the jump rate (which is the jump
attemptfrequency iy times the suceess probability, P, and also on the
jump distance, d. Hence:
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Up = Vmpmd‘ (24)
Substitution of (23) and (24) into (22) yields:
Vg = b(Vch)llz(Pch)l/2‘ (25)

Since atomic dimensions are involved, v, and v, must approximately
equal the Debye cut-off frequency. Then the first two terms of (25) can
be replaced by a terminal kink velocity, V¥, which equals the elastic
shear-wave velocity, approximately.

The production of a kink pair and the motion of a kink is very nearly
the same process in the diamond structure. To create a kink pair, two
adjacent atoms must be separated by shear. To move a kink, the same
thing happens (but the configuration is asymmetric). Since the
processes are similar, the probabilities P. and P,, should be approxi-
mately equal and (25) becomes:

Vd = V;.:?Pm- (26)

Then the next step is to calculate P,,.

In the absence of an applied stress (and other external fields) there
is no net force acting on a kink. It is located at a minimum of potential
energy, which lies a depth, ¢,, below the free-kink level. Experimental
evidence indicates that this binding energy is substantial, being of the
order of one electron-volt in Ge and Si. For small values of €, the zero-
point energy (~k60/2, where k = Boltzmann’s constant and 6 = Debye
temperature) will excite a kink at all temperatures. However, for sili-
con, k6/2 is about 3 X 1072 e.v. so thermal excitations are important at
high temperatures only.

Figure 6 shows a schematic energy diagram for a kink. The force ex-

Energy KFree kink
L 0

A) No stress

Z Bound kink

B) With stress

Fign 62 Schematic potentialienergydiagrains for tightly bound kinks along dislocation
lines.
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erted by an applied stress is b so the potential energy is —ob*x and
the tunneling distance, x* (where the total energy of a free kink be-
comes equal to that of a bound one), is:

x* = g,/ob. (27)

Since the configuration relaxes after each jump, the energy diagram is
aperiodic.
The WKB approximation for the tunneling probability is:

exp - VS [ e —wye (28)

h

where: m = kink effective mass; h = Planck’s constant /27 and F(x) —
W = €, — ob’x. The kink has a wavelength associated with it, so:

h
AN=———— = 29
\ 21)151; ‘ ( )

and this relation plus (28) leads to:
" 3db? (& (30)

In the diamond structure, d = b for a v0° dislocation, and §* = V8 1V
where Vis the atomic volume. To a sufficient approximation then, (30)
becomes:

P = exp (52 31)
m = eXp \ g (3
where €,/2V = D = characteristic drag stress.

For rapid kink motion, the exponent in (31) must approach unity so
the applied shear stress must approach:

oF = €,/21. (32)

These two equations just above give the principal results of the quan-
tum tunneling theory. First, kink motion may be stress activated at low
temperatures, and is a verv sensitive function of the applied stress.
Second, a simple condition for rapid flow results that depends only on
the binding energy density.

The binding energy, €,, is a critical quantity; it is also an elusive one
because there is no means at present for measuring it directly, and its
calculation is diflicult. One method for estimating it is to recognize that
the binding energy must be proportional to the shear cohesive energy
and write:

€, ~ G

then, from (31):
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P, = exp (—®G/o) (33)

where @ is a proportionality coefhicient to be determined by experi-
ment. Its magnitude is expected to be about ten. The appropriate shear
modulus, G, is the one referred to the glide plane {111} and glide
direction (110); designated,

Coqa = 3[Sss + 45 — Sw)]™

Two approximate measures of low-temperature flow stresses are
available: indentation hardness numbers and the elastic limits ob-
served for plane shock waves. Figure 7 shows that hardness numbers
do indeed correlate with C,4 as suggested by (33). Furthermore, the
elastic limit from shock wave data is about 44 kbars = 440 kg/mm? [10]
in approximate agreement with the hardness number.

Another measure of €, is the energy gap because excitation of one
electron of a bond across the gap destroys the bond. This measure was
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Table IV

COMPARISON OF FLOW STRESSES CALCULATED FROM ENERGY GAPS
AND OBSERVED HARDNESSES

Eg b v Flow Stress Hardness Number
Crystal (c.v.) (A) (10 *em®) (10" d/emy?) (10" d/cm?)
Ge (.80 3.99 297 5.6 6.6
Si 1.14 3.83 20.0 9.1 8.0

first applied to dislocations by Suzuki [20] who used it to set a sharp
upper limit on the allowable strain for a covalent bond. Here it is as-
sumed that it represents the energy needed to excite a kink into its
mobile state. Table 1V compares calculated flow stresses (compressive)
with hardness numbers and it may be seen that the numerical agree-
ment is good.

A consequence of the idea that the energy gap measures the limit
of shear resistance is that large pressure, magnetic, and electric fields
might influence kink motion by affecting the gap.

BEHAVIOR OF HETEROGENEOUS CRYSTALS

Most crystals consist of mixtures of regions in which the bonding is
either localized, non-localized, or intermediate. This gives great variety
to their mechanical responses and makes a general interpretation
difhcult. 'The most detailed study of the heterogeneous behavior was
that of Pariiskii, Landau, and Startsev [21] who determined distribu-
tion curves for dislocation “jumps” in Lil* crystals of two different
purities (Fig. 8). In such crystals, dislocations move rapidly for short
distances and then stop momentarily before moving rapidly again. In
an impure (10* ppm) crystal the authors found the most frequent
“jump” distance to be about 1.8 microns, whereas the most frequent
distance for a higher purity (7.6 ppm) was about 4.5 microns. This is
consistent with the idea that dislocations move easily through pure
salts and simple metals, but become stopped by impurities and other
defects when these are present.

Figure 9 shows a possible interpretation of the macroscopic behavior
of LiF. The velocity-stress curve on the left shows a hypothetical be-



Fig. 8. Distributions of dislocation “jumps” relative to the length of the jump in LiF.
N(L) = number of jumps of length less than L. Curve 1 is for crystal with 7.6 ppm im-
purities; Curve 2 for one with 10* ppm impurities. Dotted curves correspond to Gaus-
sian distributions (after Pariiskii, l.andau, and Startsev).
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havior for the pure matrix, while the curve on right shows how typical
experimental data behave. The difference between the two curves
measures the losses caused by impurities. The initial slope of the curve
for the pure crystal is determined by the damping constant, B =7 X
107! d-sec/cm?, taken from ultrasonic measurements. On the scale of
Fig. 9 this gives negligible power loss and the stress required to bring
the velocity up to its terminal value is quite small. Impurities produce
substantial losses, however, as indicated by the shading on the drawing.
Most real materials behave like the impure crystal.

To interpret the data of Fig. 9, it is suggested that the regions ad-
Jacent to impurities behave like small sections of covalent crystals (at
low temperatures) and that when short segments of dislocations get
stopped at these places, they are strongly bound and must tunnel
through their potential barriers in order to move on. This accounts for
the stress activated form of the velocity-stress relation. There are two
major complications though. One is that the local stress is concentrated
at impunrities so the applied stress is much smaller than the unknown
actual stress. The other is that because of the impurities there are long-
wavelength internal stress-fields present that amplify the effective
viscous drag as a result of the mechanism proposed by Chen, Gilman,
and Head [22].

Most real substances a) are heterogeneous, b) contain short-range
concentrated stresses, and ¢) contein long-range stress fluctuations.
Therefore, it is unlikely that detailed physical models of them can be
constructed. It is more realistic to be satishied with adequate phe-
nomenological descriptions such as (10).

EFFECT OF MOTION ON DISLOCATION CORE STRUCTURE
(DYNAMIC ANISOTROPY)

It is well known that when the velocity of a dislocation approaches
the velocity of sound, the “shape” of its stress field changes because of
the Fitzgerald-Lorentz contraction. However, drag forces can also be
expected to change the shape of a moving dislocation, primarily at the
core where the viscous losses are greatest. It was suggested some time
ago that this might influence plastic behavior [23] and recently a
specific model for f.c.c. crystals has been proposed and studied by
Copley and Kear [24].

The above authors have considered the motion of glide dislocations
in f.c.c. crystals subjected to a uniaxial stress. They assume that the
steady-state velocity of each Shockley partial is a function of the total
force acting on it per unit length. Then the velocity of an «/2 (110)
glide dislocation s a function of the average Schmid factor for its
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Fig. 10. Results of numerical calculations of the widths of extended dislocations in
f.c.c crystals as a function of relative velocity. Curves are for various values of the drag
force, F(d/cm) and for three orientations of the axis of applied tension (after Copley
and Kear).

Shockley partials, and its degree of dissociation depends on its velocity
and the direction and sense of an applied uniaxial stress. For tension
applied near a {111} direction, glide dislocations are completely dis-
sociated at moderately high velocities (~10 cm/sec) in alloys with high
drag-stresses and low stacking-fault energies. For tension applied near
{001} onthe other-handjglide dislocations constrict at high velocities
in alloys with high frictional drag-stresses and high stacking-fault
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energies. These effects should exert an influence on the strain harden-
ing characteristics of such crystals at high strain rates through their
effect on the probability of cross-glide.

The dynamics were studied by means of the velocity-force relation:

V = [HeFIZS (3%)

where V* 1s the terminal velocity, F is the drag force acting on a given
dislocation line, and 3f; is the sum of forces caused by the resolved
shear stress, the stacking fault, and others. Some of Copley and Kear’s
numerically calculated results are shown in Fig. 10, where the width of
an extended glide dislocation is given as a function of its relative veloc-
ity (log scale). Several curves are shown with various values of the drag
force. F(d/cm); a stacking fault energy of 20 erg/cm?; and three orien-
tations of the stress-axis (111, 113, and 001). It may be seen that ex-
tension occurs more readily than contraction because the attraction of
the partials is constant, whereas the repulsion depends strongly on
their separation distance. Also. extension begins at very low relative
velocities, so these core structure changes are not limited to very fast
dislocations. If the signs of the applied stresses are reversed so are the
signs of the width changes.

The dynamical anisotropic behavior of extended dislocations may be
expected to influence the macroscopic flow properties because wide
disiocauons wiil tend not to cross-glide as much as narrow ones. Also,
although the present theory neglects changes in the total viscous drag
with the width, such changes are likely to occur.

SUMMARY

Several aspects of dislocation motion in viscous or quasi-viscous
media are considered. The discussion begins with a review of two meth-
ods for measuring dislocation mobilities as a function of stress; one is
the selective etching method and the other is ultrasonic attenuation
measurements at very high frequencies. Available damping constant
data are summarized.

It 1s pointed out that no simple analytic function (two constants) can
describe all of the observed velocity-stress behavior. A classification
scheme is given for the four general behavioral types. It is suggested
that two broad classes of crystals need to be distinguished: first, those
with localized chemical bonds (covalents); second, those with non-local
bonding (metals and salts). In addition, it is important to distinguish
stress activation from thermal activation for the localized bonding case.

Several authors have discussed damping mechanisms for disloca-
tions. Apparently they have all underestimated the dominant role
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played by the viscous forces along the glide plane. Itis shown here that
this is so large that the viscous drag produced by the integrated strain-
rate field away from the glide plane is small enough to be neglected.
As a result some previous numerical calculations are incorrect by an
order of magnitude.

Various elementary sources of glide plane viscosity are discussed.

It is emphasized that stress alone can activate dislocation motion at
low temperatures, and a quantum-mechanical description of the be-
havior is proposed and shown to be semi-quantitatively consistent with
available hardness and plane shock-wave data.

Real crystals are mixtures of regions of the limiting types. There-
fore, they are poorly suited for detailed analysis and are best described
in terms of phenomenological parameters.

The effect of motion through a viscous medium on the structure of
dislocation cores is discussed. Depending on the direction of an applied
tension or compression relative to the crystal axes, extended disloca-
tions may be expected to extend further or contract. Thus crystals may
possess “dynamical anisotropy.”
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CONSTITUTIVE EQUATIONS FOR
DYNAMIC MATERIAL BEHAVIOR

S. R. BoODNER
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Haifa, Israel

ABSTRACT

The constitutive equations that have been developed for the dynamic behavior of ma-
terials presuppose the existence of a reference “static” yield criterion. An alternative
formulation motivated by the work on dislocation dynamics considers the total deforma-
tion to consist of elastic and plastic components throughout the deformation history.
This procedure permits the consideration of large deformations (finite strains) in a
direct manner. The present paper outlines an clastic-viscoplastic theory based on this
approach and includes numerical results for an internally pressuvized thick walled
sphere.

INTRODUCTION

The problem ot developing constitutive equations for the dynamic
behavior of metals resolves mainly in the determination of expressions
for strain rate sensitivity under multiaxial loading. The extent to which
the stress-strain relations of metals are dependent upon the strain rate
is still not a settled matter. Bell has shown [1, 2] that the stress-strain
curves of a number of pure, or almost pure, fully annealed FCC metals
are independent of strain rate over a large dynamic range (from 1 to
10* sec™!). On the other hand, it has been shown that these materials
do show time effects in the low strain rate region (€ ~ 107* sec™!) [3].
Although the magnitudes of these time effects are small, they can lead
to important consequences such as steps or serrations of the stress-
strain curve. These irregularities of the stress-strain curve are due to a
combination of negative strain rate dependence of the flow stress in the
range of testing, and the method of load or strain application [4].

The FCC metals studied by Bell are characterized by smooth stress-
strain_curves in _the dynamic range, i.e., they do not exhibit a sharp
yield point. There is, however, ample experimental evidence to show
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that metals with sharp vield poimts are fairly rate sensitive over a large
range ol strain rates. Most technological metallic allovs have this
property. For example. the vield stress of mild steel inereases by a fac-
tor of 2.5 over a strain rate span from 10 %o 10? sec ' [5].

There has been considerable interest in formulating constitutive
laws tor rate sensitive materials i order to analyze dynamic loading
problems. Problems of elastic-plastic wave propagation and the per-
manent deformation of structures due to blast loading depend upon
such laws. There s also a class ol problems for which strain rate effects
can be mmportant but inerta terms ave still small.

Onlv relatively few general forms ol constitutive laws have been pro-
posed. The best known is that due to Malvern [6. 7] which hypothesizes
the existence of a relerence, “static,” stress-strain {unction and then
relates an increase in the stress from this datum to the imposed strain
rate. 'This law has shown some success in predicting certain experi-
mental observations. "The best known is the result that a small ampli-
tude stress pulse would propagate at the elastic velocity in a plastically
prestrained medium. Another result of a special form of this Law is the
prediction of permanent deformation values for blast loaded struc-
tures. These values were found to be in good agreement with experi-
ments [8, 9]

A modification of Malvern’s treatment to include a limiting maxi-
mum stress-strain curve was proposed by Lubliner [10]. A muluaxial
version of Malvern’s hypothesis was formulated by Perzyna [11] as a
generalization of a more restricted viscoplastic Taw by Hohenemser and
Prager [12]. Most of these constitutive laws have been summarized and
discussed in papers by Perzyna [13] and by Lindholm [14].

Perzyna and Wojno have recently extended the mulaaxial formula-
tion to include finite strains [15]. ‘The basic assumption of that paper is
the additivity of the clastic and inelastic parts of the rate of deforma-
ton tensor. The paper retains, however, the requirement of com-
pletely elastic response for stress states below a vield criterion. The in-
clastic part ot the rate of deformation tensor is taken to be a function of
excess stresses above the static yield criterion.

The common feature of all of these constitutive laws 1s the hypoth-
esis ol a reference “static” stress-strain relation. For multaxial load-
ing, this corresponds to a reference “static” vield surface which grows
in some prescribed manner with stram rate. 'The results ol multiaxial
strain rate experiments are usually represented in a similar manner.
The dynamic yield surface, expressed i terms of stress and stress
deviator imvariants, has been considered to be expressible as a function
of invariants of the elastic strain rate tensor, c.g. [14].

Although this formulation ¢an serve to predict important physical
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observations, it is not entirely satisfactory as a general law of material
behavior. The question of the reference “static” yield surface is of more
than academic interest since yield surfaces do vary in the low, so-called
“quasi-static,” range. For example, a small negative strain rate de-
pendence in this range was shown to be the underlying cause of steps
or serrations in the stress-strain curves [4]. The constitutive laws for
this range should include time effects such as those due to thermally
activated yielding mechanisms and to hardening resulting from im-
purity and vacancy diffusion. In addition, the requirement to refer dy-
namic stress-strain relations to a reference “static” case does not lend
itself readily to account for dynamic strain hardening. The manner in
which the stress at high strain levels depends on the strain rate may
differ appreciably from that of the yield stress, e.g. [5].

CONSTITUTIVE LAWS BASED ON “DISLOCATION DYNAMICS”

An alternative formulation of elastic-viscoplastic behavior of ma-
terials has been developed based on considerations of microscopic de-
formation mechanisms [16-18]. The motivation for this theory is the
experimentally observed properties of dislocation motion and multipli-
cation. The theory is, however, a macroscopic continuum one in that it
relates macroscopic quantities such as stress, strain, and strain rate.

In terms of continuum mechanics, the theory considers the deforma-
tion from the initial state to have both elastic and plastic (irreversible)
components. The plastic strain rate é” is related to a function of the
strain (the mobile dislocation density p) and a function of the stress (the
dislocation velocity v). That is

€ = bp(e’)v(o) o))
where b is a constant. The measured elastic strain rate é° is given by
é = (1/M)o ()

where M is the combined elastic modulus of the specimen and the
loading system. The total strain rate imposed by the loading device €
is then the sum: é° + €”.

Strain hardening can be introduced by considering v to be a function
of €” as well as of o. Forms for v that have been suggested from direct
measurements and from theoretical considerations are

and

v=A exp [-B/(c — ¢e")] 4)
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where oy, g, n, A and B are material constants. The first form (3) is
somewhat easier to interpret and use mathematically, but (4) seems to
hold over a greater range and has more physical meaning [19].

These relatively simple equations can be combined to give an elastic-
viscoplastic equation for the material response. The equation can be
integrated from the initial state (with an initial dislocation density) for
a variety of loading conditions. These include straining in a flexible ma-
chine, constant stress (creep), and rapid stressing to high level to obtain
vield delay times. The results for imposed straining show that sharp
yield points and post yield stress drops would result from suitable initial
parameter values, and that the results depend upon the rate of strain-
ing.

There is accumulating evidence that this description of material be-
havior is a good approximation to the actual behavior of a number of
metals. The repeated discontinuous yielding effect can also be ade-
quately described by this approach [20].

If (3) is used, then it can be shown that both sharp yield points and
strong strain rate sensitivity result from small values of the exponent n.
It is noted that the derived value of n for steel, which has a sharp vield
point and is rate sensitive, is about 30 [18]. The value of n for FCC
metals, such as Cu, which have smooth stress-strain curves and are
relatively rate insensitive, is about 200 [18]. The theory accounts, in
this manner, for the experimental observation of an association be-
tween the sharp yield point and strain rate sensitivity. Another inter-
pretation of this result is that the plastic strain rate component is small
for the lower values of n so that the elastic effect is more pronounced.

An important consequence of this formulation from the viewpoint of
continuum mechanics is that vielding is not a separate and independent
criterion but is a consequence of a general constitutive law of the ma-
terial behavior. Elastic and plastic deformations are not separate en-
tities bounded by a yield criterion, but contribute to the total deforma-
tion throughout the loading history. Recent experimental work tends
to indicate that this is a more realistic formulation of the actual be-
havior of metals. Accurate measurements in the microstrain region
have shown that irreversible strains do occur at very low strain values.

FORMULATION OF ELASTIC-VISCOPLASTIC THEORY

There does not seem to be a unique method of generalization of the
preceding equations based on dislocation kinetics to the multiaxial
case. Direct interchange ot stress components by tensor invariants is
arbitrarysands-by-itself-may-notdead to a consistent formulation. It
seems that a systematic development of a viscoplastic theory motivated
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by “dislocation dynamics” could be obtained within the framework of
classical plasticity theory. This has been carried out by Partom and
Bodner [21] and applied to the case of a thick walled sphere under in-
ternal pressure. Aspects of the theoretical development and some of
the results are described in this paper. The principal point for the
present discussion is that it is possible to formulate a general elastic-
viscoplastic theory without an independent “static” vield criterion.
The theory [21] accounts for large deformations and finite strains.
It therefore proved more convenient to use particle velocities and de-
formation rates rather than strains as the basic variables. The total
deformation rate dj; is the symmetric part of the velocity gradient v; ;:

du = (%)(vi.j + ) (9)

and is considered to be the sum of elastic and plastic (irreversible) com-
ponents

dij=di" + d;)". (6)

This is also the basic assumption in the work of Perzyna and Wojno
[15]. Thermal effects are not considered in the present discussion.

The large deformation viscoplastic theory has been developed in
complete generality [21], but for the present purpose it will be directly
applied to the case of spherical symmetryv. The particle location
(Lagrangian coordinate) is designated “«” and the spatial location
(Eulerian coordinate) by “r.”

The total radial and circumferential deformation rates d, and d,. can
be expressed in terms of the radial velocity v:

_dv
T or
(7)
d. = vfr.

The strain rate expressions depend on both the deformation rates
and the strains. For the Almansi strain measure with spherical sym-
metry, these are

ér” = (1 - 2€l'y)dry

. (8)
€= (1 — 2¢M)dY

where the superscript y refers to either the elastic or plastic component.
The strain components can be obtained by integrating (8). It is noted
that in view of the nonlinearity of (8), simple superposition of strain
rate components cannot be applied.

The total strains can also be expressed in terms of the particle loca-
tion. For the Almansi strain measure these relations are
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« =51 (5)]
[1 — (ar)?].

The preceding equations constitute the essential kinematics of the

)

(Y9)

15—

€. =

problem. The equilibrium equation, for spherical symmetiv, is

do, 2 )
— 4 — (o, — o) = ). (1)
ar r

The remaining equations in the tormulation of the problem arve the
constitutive equations of the material behavior, and the boundary and
initial conditions. For the particular numerical examples 1o be de-
scribed. the boundary and initial conditions consisted simply ot a
stress tree outer surface and a constant radial velocity imposed on the
inner surface commencing at + = (.

The consututve laws relate the elastic and plastie strain rate com-
ponents to the stress. The total stress 1s a state variable since it is divecty
related to the elastic strain component. Additional stresses that are not
state variables. such as would be ¢enerated by internal viscosity, are
not considered in the development. The rate at which work 1s done on
a unit volume element is therefore

W= ad;+d}). (1h
In finite strain analvses it is convenient to relate the elastic strain to
the stress through the stramn energy function. The stress-strain relation
tor spherical symmetrv is
ag.=(p pu)U:n + Fie " + F:(G/-“)z]
(12
o= (ppolFo+ Fe + Foe )]
where p/p, 1s the density ratio referred to the initial state and s a fune
tion of the strain invariants. £,. E,. E;:
(p po)? =1 — OF, + {F, - SE.. (1)
The coeflictents Fy. F,. F, can be obtained from the strain energy func
tion ¢ and the strain invariants,

oY s i
= L — 4 (B, — Q) —
Fo aE, F ok, (e = 23 ol
ol P Js
—F =9 — + (QF . + —_— e — (]
Fi= 200+ QF + D e B e (14
P s n AW

0k, | OF,
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An uncoupled form of the strain energy function was used, that is, one
for which the distortional and dilational components are distinct [22]:

Sl (5 T ) o0

where K, and w, are the bulk and shear moduli of the initial state. The
parameters « and 8 determine the change of volume with pressure:
a =1, 8= 2 are suggested as reasonable values. The stresses o, and o,
could therefore be computed from the elastic strains and the invariants
of the strain tensor.

The plastic deformation rate component can be expressed as a func-
tion of the stress by means of a viscoplastic flow law. For a systematic
development of these relations, it is convenient to work with the flow
law of classical plasticity theory. A requirement on the plastic stress-
strain relation is that positive work is done during plastic deformation,
that is

oudi” = 0. (16)

The flow law of classical plasticity satisfies this condition by stipulating
that

di’ = di” = Ao (17)

where the bar symbol refers to the deviator. This relation also satisfies
the conditions for material stability (the condition of normality to the
yield surface is not directly relevant here). The deviatoric character of
the flow relation means that the plastic deformation is incompressible.
A compressibility term does appear, however, in the elastic strain
energy function (15).

Equation (17) can be squared to obtain A,

N2 = D], (18)

where J, is the second invariant of the stress deviator and D, is the
second invariant of the plastic deformation rate. '

In classical plasticity, plastic flow takes place when a yield condition is
satisfied. The von Mises yield condition is, in the present notation,

J2=—Y/3 (19)

where Y is the yield stress in tension. The flow law then can be written
as

di” = [=D,"(Y*/3)]"*a;; (20)
which is the classical von Mises law of plastic flow. Equation (20) ap-

plies, of course, only when (19).is satisfied. If —J, < ¥?/3, then A and
d;* are zero.
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A viscoplastic constitutive law could be obtained from (17) by as-
suming that a relationship exists between D,” and J,. Forms for this
relation are suggested by the work on dislocation dynamics, i.e. (3) and
(4). The proposed multiaxial generalizations of those equations are

D," = *(11;2[‘12/()(2/3)]" (21
and
D" = =Dy exp [(Zz/f%)(_]z]. (22)

In these equations Dy, n, X and Z are material constants. The coefh-
cent Cy in (21) 1s a scale factor rather than an independent material
parameter. The quantities X and Z cannot be directly related to the
yield stress Y oof the perfectly plastic material. If (21) is used, then per-
fectly plastic behavior would be obtained in the limit as n = . For this
special case X would be the same as Y. Equation (22) does not admit
such an interpretation since Dy* is the upper bound value of D,”.
Equations (21) and (22) do not include strain hardening, but they can
be modified to do so.

When (3) or (4) are combined with (1) to give the relation between €
and o, a term p(€”), the density of mobile dislocations, appears in the
stress-strain rate relaton. However, the plastic strain €” is not a state
function, and this representation is only valid for special loading
histories for which p(€”) is known. Generalizing (21) or (22) in this man-
ner would require €y or Dy to be a function of state variables such as the
stress, temperature, and others that may be introduced.

The general method of numerical solution of these equations re-
quires working with a space and time network. At each time interval, a
new velocity distribution is assumed based on the previous state. 'T'he
deformation rates, total strain rates, and strains are calculated at each
point from the kinematic relations. The total deformation rate is con-
sidered to be divided into elastic and plastic components, and the
stress a; 1s calculated from the respective constitutive law. 'The correct
stress at all points must, of course, satisfy the equilibrium equation
and the constitutive laws. A successive approximation procedure can be
developed o solve the equations over the space and time network.

In this manner 1t is possible to solve problems for a variety ol load-
ing conditions and different constitutive laws. The procedure does not
require prior determination whether the material behavior is elastic or
plastic since the formulation accounts for both components at all
stages.

Numecrical analyses were performed for the sphere problem for a
number of loading histories and for clastic, elastic-perfectly plastic,
and elastic-viscoplastic matcrial behavior. Inertia terms were not con-
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sidered in these examples. It does not appear that the method of
numerical solution used for the quasi-static problems could be readily
adopted to include inertia terms. Wave propagation problems could be
formulated in a similar manner, but would require a different numeri-
cal technique.

NUMERICAL EXAMPLES

Calculations were performed for the deformation of a thick walled
sphere subjected to an imposed velocity distributed uniformly around
the internal surface. Specitying the velocity rather than the pressure
is a more convenient numerical procedure since an instability is ex-
perienced by the system. After the instability, the load becomes multi-
valued whereas the radial deformation increases monotonically.

Results for the pressure-radial displacement relation of an elastic-
viscoplastic sphere are shown in Fig. 1. The initial inner and outer
radii of the sphere are 10 and 20 cm respectively, and viscoplastic be-
havior according to (22) is assumed. The quantities used in the strain
energy function, (15), are Ko = 10* Kg/am?, u,= 10° Kg/cm?, a=1,
B=2. The results in Fig. | are for a prescribed stress parameter
Z(100 Kg/cm?®) and imposed velocity v;(0.05 ¢cm/sec) on the inner sur-
face. Higher curves are obtained for smaller values of the parameter
Dy where Dy? is the maximum value of the second invartant of the
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Fig. 1. Internal pressure —radial displacement rclations for various material parameter
values of elastic-viscoplastic sphere.
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Fig. 2. Amount ol plastic deformation throughout the wall thickness for elastic-visco-
plastic sphere.

plastic deformation rate. This is a consequence of a smaller plastic
deformation rate contribution to the total deformation rate. A larger
clastic component would correspond to higher pressure values for the
same delormation.

The instabilities in the curves in Fig. 1 are a combination of both ma-
terial and geometrical eflects. An instability occurs even for the fully
clastic case, but plastic strain contributions tend to reduce the level of
the curves and sharpen the instability.

The amount of plastic straining throughout the sphere thickness for
maintained velocity on the inner surface is shown in Fig. 2 for a partic-
ular set of parameter values. It is noted that the inner region initially
has the largest plastic deformation, whercas the reverse occurs for
large deformations. The fully plastic condition is approached at the
Jarger deformations.

The effect of dilferent values of the imposed velocity on the pres-
sure-displacement relation is shown in Fig. 3. The parameters used in
the calculations correspond to highly rate sensitive materials since a five-
fold increase in the imposed velocity appreciably alters the curves for
the same value of Dy, 'The curves in Fig. 3 indicate that rate sensitivity
tends to increase for smaller values of Dy (corresponding to a smaller
inclastic contribution to the total deformation rate). "That is, the curves
for the different velocities would have a greater spread, e.g., the
velocity ellect is greater for Dy =15 X 107 sec™ than for Dy= 1077
sec ' An appraisal ol rate sensitivity cfiects could have been more
readily performed had (21) been used in the calculations. The ex-
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Fig. 3. Effect of imposed radial velocity on pressure-inner boundary displacement
relation of elastic-viscoplastic sphere.

ponent n in that equation is more directly associated with rate sensi-
tivity effects [18, 23).

Pressure-inner boundary displacement curves for elastic-per-
fectly plastic behavior are shown in Fig. 4. These curves correspond to
the large deformation analysis and are somewhat below the corre-
sponding curves of the classical infinitesimal theory. The fully elastic
case could be obtained from this analysis as ¥ becomes increasingly
large.

The effect of increasing plastic deformation in reducing the maxi-
mum pressure and sharpening the instability is well illustrated in Fig.
4. Lower values of the yield stress ¥ correspond to increased plastic
deformation at the same radial displacement.

From Figs. 1 and 4 there appears to be a correlation between de-
creasing D, and increasing Y. Both correspond to smaller plastic con-
nd therefore to higher pressure-
seen that increasing the imposed
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Fig. 4. Pressurc-inner boundary displacement relations for various values of the yield
stress of clastic-perfectly plastic sphere.

velocity for an elastic-viscoplastic material also increases the pressure-
displacement curve in the same manner as increasing Y for a perfectly
plastic material.

The viscoplastic laws (21) and (22) are represented in Fig. 5 for a
number of parameter values. Equation (22) leads to a limiting value for
the second invariant of the plastic deformauon rate D,”, whereas D,”
is unbounded for (21). Perfectly plastic behavior could be obtained
from (21) in the imit as n — . The corresponding curve in Fig. b
would be a horizontal line at D,” = 0 unul —J, = X?/3, and then a
vertical line. -

Pressure displacement curves based on (21) are shown in Fig. 6 for
various values of the exponent n. The results approach that of the
perfectly plastic material for increasing n. The curves are lower than
that of the perfectly plastic case since lower values of » correspond to
larger plastic deformation rate contributions when —/, < X*/3 (Fig. 5).
These results are similar to those of Fig. | where l?lrrli‘ger values of D,
correspond o larger plastic deformation rate contributions. No plastic
deformation occurs in the perfectly plastic case untl the yield stress is
exceeded. The instability in the curves in Fig. 6 is due to both ma-
terial and geomertry elfects, but plastic instability appears to be the
principal factor [or the cases shown.

T'he present analysis could be readily modified to include an “over-
stress” viscoplastic_law ol the kind tformulated in [15]. This would
correspond in Fig. 5 to a translation of the origin of the curves along
the horizontal axis to —/, = X?/3.|The subscquent analysis and numeri-
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Fig. 5. Representation ot viscoplastic flow laws (varation of second imvariant ol plastic
deformation rate with second invariant of the stress deviator).

cal procedure would be essentiallv the same. Although this would re-
duce the formulation to the more classical forms. it would eliminate the
primary physical motivation of the theory and many important physical
considerations. The formulation of viscoplastic laws in terms of the
“overstress” due to strain rate does not seem to be a fundamental re-
quirement. On the contrary, the inclusion of elastic and inelastic com-
ponents to the total deformation rate appears to have a sounder
physical basis and is simpler to treat analytically.
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EFFECT OF STRAIN RATE ON THE
DISLOCATION SUBSTRUCTURE IN
DEFORMED NIOBIUM SINGLE CRYSTALS

J. W. EpINncTON

Buattelle Memorial Institute
Columbus, Ohio

ABSTRACT

This paper describes an investigation of the relationship between mechanical proper-
ties and dislocation substructure in the strain rate range 107! to 10* sec™!. The relation-
ship between lower yvield stress 7y1q and strain rate e follows two consecutive semi-
logarithmic relationships of the form 7.y = a + B8 log € with a break at a strain rate of
approximately 10 sec™. The dislocation configurations produced by deformation in
these two regions have been investigated at strain rates of 1.2 X 107 sec™" and 1.5 X 103
sec”! using transmission electron microscopy techniques. The relationship between dis-
location density, flow stress, and plastic strain has been determined and is discussed
in terms of the dislocation structures observed.

INTRODUCTION

Up to the present time a number of studies have been made of the
behavior of metals deformed at high strain rates. Considerable interest
has been centered on the measurement of mechanical properties,
largely because of the difficulty of instrumentation at high strain rates.
Although rather less data exist for b.c.c. metals than for f.c.c. metals.
the information at present available indicates that the effect of strain
rate on the flow stress of b.c.c. metals is quite complicated. For exam-
ple, in iron the strain-rate dependence of the room temperature lower
yield stress Tyiq in the strain-rate range 107* to 10° sec™! can be de-
scribed by two consecutive semilogarithmic relationships [1] of the
form

Tyicla = @ + B log €

where € is the applied strain rate and « and 8 are constant over particu-
191
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lar strain-rate ranges. These have been interpreted in terms of two
rate-controlling mechanisms [1-3]. In polycrystalline molybdenum
Orava [4] has found that while the same form of relationship applies in
the strain-rate range 107% to 107", several linear regions exist, the de-
tails of which are strikingly sensitive to grain size. Davidson, et al. [5]
have also shown several linear stages for single crystals of molybdenum
deformed in the strain-rate range 107* to 10% sec™! although the details
of these linear regions do not agree with those of Orava. In polycrys-
talline niobium three linear regions have been reported by Sargent,
et al. [6]. in the strain-rate range 107 to 107! sec™*, but Fourdeux and
Wronski [7] report only two. In contrast. Mitchell, et al. [8] report two
regions for single crystals of niobium. Four regions have been found
for polycrystalline tantalum {6] deformed in the strain-rate range 107
to 107! sec™!, and three ranges have been found for single crystals of
tantalum [9] deformed in the strain-rate range 107" to 1 sec ™.

None of these studies were supported by structural studies of the dis-
location substructure generated at different strain rates except those of
Fourdeux and Wronski on niobium which was deformed over a rela-
tively restricted strain-rate range. This paper presents a detailed study
of the mechanical properties of single crvstals of niobium deformed in
the strain-rate range 107" to 10® sec™, together with extensive investi-
gations of the dislocation configurations and densities generated by de-
formation at the extremes of the strain-rate range investigated.

EXPERIMENTAL PROCEDURE

General

Single crystals of niobium of the orientation 42 shown in Fig. 1 were
grown by electron beam melting. The starting material was 3-inch-
diameter “beam melted” niobium supplied by Fansteel Corporation.
The rods were given three zone passes from bottom to top in a vacuum
of 107 torr and at a speed of 1 inch per hour. The analysis of the un-
purities present after melting is shown in Table 1.

Specimens were deformed in compression because this is the
simplest mode of operation of the Hopkinson bar testing device which
was used to achieve the high strain rates. In addition, relatively short
specimens were used to prevent stress gradients in the specimen during
testing with the Hopkinson bar. In order to reach strain rates of the
order of 10? sec™' one series of specimens (.25 inch long and approxi-
mately 0.19 inch in diameter was produced by spark machining. The
endsgof the compression specimens were machined parallel and flat
to within 0.00025 inch. Approximately 0.015 inch was polished from
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the surtace using a chemical polishing solution of 304 HF 40% HNQO,
in order to remove the damage caused by the spark machining process.
In addition to these specimens a series of shorter specimens were also
produced in the same wav in order to reach strain rates close to 107
sec™". The dimensions of the short specimens were. length 0.030 inch.,
diameter 0.170 inch. with the same tolerances as the long specimens for
the compression taces. It was not possible in either series of specimens
to increase the axial ratio ot the specimens by cutting down the diam-
eter of the specimens in order to minimize end effects. To do so would
introduce too great a mismatch between the specimen and the anvils of

Table 1
INPURTTY CONCENTRATIONS IN

Ntop1tym ArTrer MrEeLTING

Concentra- Concentra-

Element Lo, ppm Flement tion. ppm
(@ 9 W 50
Q) 95 Ly 20)
N 39 Mn 15
H 0.5 Al 15
Fe 15 C.u 15
Si 15 Sn 15
Ta 350 Cr IH
11 15 \ 15
Mo 15 I'b 15
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the Hopkinson bar resulting in possible departure of the loading sur-
faces from a plane, thus introducing errors in the measurements.
The niobium crystals were deformed at room temperature in the
strain-rate range 107 to 6.5 X 10® sec™! using three different testing
machines. The low strain rate tests were performed on a standard
“Instron” testing machine, the intermediate strain rate tests were per-
formed on a “Krafft” dynamic loading device [10], and the high strain
rate tests were performed on a “Hopkinson bar” impact loading device.

ELECTRON MICROSCOPY

General

Transmission electron microscopy experiments were performed on
thin foils taken from Jong specimens deformed at strain rates of
1.2 X 107 sec! and 1.5 X 10% sec™! to a series of strains up to 30% in
shear. The strain on the Hopkinson bar tests was limited by use of a
series of thick steel collars of different lengths, shorter than the speci-
men and separated from the specimen by loose cotton wool packing.
The action of the collar is to prevent further deformation of the speci-
men past a certain strain by taking up the stress applied to the speci-
men. In this way different strains were achieved at the same strain rate,
with the same striker bar velocities. Thin sheets 0.030 inch thick were
spark cut parallel to the primary slip plane (011) and discs 2.3 mm in
diameter were spark trepanned from these sheets to obtain discs from
the center, and as close as possible to the compression faces, of the test
specimen. In practice thin areas were obtained within 2 mm of the
compression face. These discs were indented with the solution de-
veloped by Stickler and Engle [11], which consists of 2% HF, 5%
HNO;, and 93% CH,OH used at —60° C, 250 volts, and 60 ma, and
produces a bright indented surface. Finally, the discs were chemically
thinned using a solution of 30% HF and 70% HNO; at —50° C. The
final procedure was controlled by the usual light beam and microscope
method. After washing in alcohol, specimens were observed in a Sie-
mens Elmiskop 1A electron microscope using a Swann-type double tilt
goniometer.

Burgers Vector Determination

The multiplicity of slip systems in b.c.c. crystals complicates the
unambiguous determination of the Burgers vector using the g.b.= 0
criterionsThe possible Burgers.vectors to be considered include
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Fig. 2. A schematic diagram showing the 200, 211,011,211, 112. 112 reflections which
can be used in the Burgers vector analysis. tor a thin toil parallel to the primarv slip
plane (011). Note that all g— (111) or a (001) Burgers vectors are invisible under at least

one reflection.

a(100) as well as% (111) since both are stable [12]. Figure 2 shows the

important reflections which are available, i.e., within the tilting range
of the goniometer stage, for Burgers vector determination. These re-
flections include 100, 011, 211, 211, 112, 112, and the directions of
various Burgers vectors which are invisible for these reflections are
shown in Table 2.

Table 2

InvisiBILITY CRITERIA FOR VARIOUS
BURGERS VECTORS IN NI1OBIUM

Burgers Vector Directions for
Reflection Which Dislocation Is Invisible

100 [010] [001][011]

011 [100] [T11][111][011]
211 [TT1][011]

211 [111][011]

112 [111][110]

112 [T11][110]
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It may be seen from this table that, by use of all the available reflections,
all % (111) Burgers vectors and «{001) Burgers vectors can be identi-

fied (assuming no a{011) Burgers vectors are present) and that some
a{011) Burgers vectors can also be determined. However, because of
the symmetry of the [011] axis, it is not possible to distinguish between

. . . . a .+ .
primary dislocations with Burgers vector 5 [111] and secondary dislo-

. . . . a =
cations on the primary slip plane with Burgers vector 5 [T11] unless the

specimen is placed in the microscope in a known orientation. For simi-
lar reasons it is not possible to differentiate between the Burgers vectors

% [111] and % [111]. However, in all cases the orientation of the speci-

men was known in the electron microscope so that these distinctions
could be made.

A further problem associated with Burgers vector determination in
niobium is the effect of lattice anisotropy on the dislocation image.
Head, et al. [13] have computed dislocation images of screw disloca-
tions lying parallel to (111) directions in a-iron for the 011 and 112
reflections when g.b. = 0. For the 011 reflection no significant contrast
is predicted but for the 112 reflection a weak alternating double image
is predicted. Similar effects are found in niobium but it is still possible
to determine Burgers vectors knowing that dislocations will show weak
alternating double images for 112-type reflections when g.b. = 0.

Dislocation Density Determination

Dislocation density measurements were made on plates taken from
15 different areas of each foil examined. Three foils were examined
from each specimen, one from the center, one from near the compres-
sion face, and one from between the previous two. In the absence of a
cell structure the method used was that given by Keh [14] in which the
average dislocation density N is given by

_(ng my) 1

v={E+i)e
where n, and n, are the average number of intersections between the
dislocations and two orthogonal sets of grid lines lengths L, and L,
and ¢ is the foil thickness. However, in the presence of a cell structure
or when marked dislocation tangling occurs, the dislocation density

wasdeterminedusing.the method outlined by Ham [15] where
N = 2n/Lt, where n is the number of intersections between the disloca-
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tions and a random set of lines length L and ¢ is the foil thickness. The
thickness of the foil for most samples was determined from observa-
tions of dotted contrast on steeply inclined dislocations which were
usually present on secondary slip planes in each foil. 1t was found that
¢t was generally close to 2500 AL

There is no single reflection which gives a sharp image that does not
have some dislocations out of contrast (see Table 2). Consequently. to
every thin foil. dislocation density coauts were made on four difterent
areas with each vellection mm Table 2 operaung on each used. In this
wayv the fractons of dislocations mvisible under each reflection could
be determined. Sabsequently. one reflecuon. nsuallv 2000 was chosen
and 15 plates for dislocation density counts were taken. Atiei counting.
the dislocation density counts with the 200 reflecuon operative were
muluplied bv the necessarv tactor obtained from the previous tour
areas to determine the densities of primary and secondary dislocations

m each foil.
RESULTS

Mechanical Propertes

Figure 3 shows tvpical shear stress shear strain curves tor (a) the
long specimens and (b) the short specimens at various strain rates.
N-rav measurements carried out on the crystals after deformation
showed that the crvstal axis remained within two degrees of the iniual
orientation. Consequently, the stress;strain curves were resolved along
the initial ortentation of the primarv slip plane. The long specimens all
showed vield points, the size of which increased with increasing strain
rate. The absence of a vield point for the Hopkinson bar tests is a re-
sult of the occurrence of Pochhammer-Chree oscillations in the inttal
portion of the oscilloscope trace which mask the vield point. Conse-
quently. the initial portion of the stress/strain curve was obtained by
averaging these oscillations. The short specimens also show a vield
point at high strain rates 250 sec " but not at very high strain rates tor
the same reason as described for the long specimens. and not at the low
strain rates, probably because of end effects. No stage I hardening is
observed for either long or short specimens. although the crystals are
tavorably oriented for single slip. This absence of stage 1 1s probably
a result of the occurrence ot multiple slip from the beginning of defor-
mation bhecause of end effects. This explanation is strengthened by the
lack of rotation of the specimen axis during deformation as described
previouslvaltismoticeableghagthepvork-hardening rate is higher in the
short specimens compared with the long specimens (see Table 3). This
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Fig. 3. Typical resolved shear stress/resolved shear strain curves for (a) long (b) short

specimens.

THE EFFECT OF

Table 3

STRAIN RATE ON WORK-

HARDENING RATE AT 10% STRAIN

Short Specimens

Long Specimens

Strain Rate,

Work-Hardening

Strain Rate, Work-Hardening

sec! Rate, Kg mm™ sec™! Rate, Kg mm™
1.6 X 1074 18.25 2.46 X 107 7.7
1.22 X 107! 10.05 3.3 X 107! 5.9
24.8 7.75 50.73 4.1
1.4 X 103 3.5 6.5 X 10 2.0
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Fig. 4. The variation of vield stress vs. the logarithm of rthe strain rare for niobium

single crystals.

effect is probably caused by an increased dislocation-multiplication
rate with strain in short compared with long specimens because of end
effects although this has not been verified at present. Both the long
and short specimens show the same trend, namely a reduction in work-
hardening rate with increasing strain rate. This is similar to the effect
of lowering the deformation temperature observed in tantalum [9] and
niobium [8], and similar to the effect of strain rate on work-hardening
rate observed in iron [5].

The variation of lower yield stress with strain rate for the present
specimens is shown in Fig. 4. It is immediately apparent that this ma-
terial exhibits two regions with different strain-rate sensitivity of the
vield stress like those found in a-iron in contrast to the several regions
found by other workers for niobium [6-8]. The difference between the
present work and that of previous workers [6-8] may be a result of
impurity differences because the results of Sargent, et al. [6], and
Fourdeux and Wronski [7] on different purity polycrystalline material
did not agree with each other, and the results of Mitchell, et al. [8] on
very pure single crystals of niobium are different from the present
results on less pure single crystals. Note that both the long and the
short specimens fall on the line and that in the region of overlap of the
“Instron” and “Krafft” machines the results agree well. Note also that
the change from Region 1 to Region 2 occurs within the “Krafft” test-
ing range and is not related to a change in testing technique.
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ELECTRON MICROSCOPY

Strain Rate 1.2 X 107 sec™

Specimens were deformed to shear strains of 3.7%, 5.4%, 12.64%,
19.88%, and 29.7%. The characteristic dislocation configurations of
each strain are described separately.

(a) 3.7% Shear Strain

At this low strain the-dislocation configurations consisted of a few
tangles such as that shown in Fig. 5 separated by relatively large areas
of low dislocation density which were approximately 10 u in diameter.
The dislocation configurations were independent of the position of the
foil within the compression specimen up to 2 mm from the compres-
sion faces. Most of the dislocations were either mixed or screw in
nature, and those edge dislocations visible were present in the form of
short dipoles. The majority of the dislocations present are primary dis-

. . a .+ A
locations with Burgers vector 5 [111], see Fig. 6 at .1. However, short

dislocation segments with Burgers Vectorg [111] are visible at B lying
on (101) plane. These two sets of dislocations frequently interact to
produce short segments of dislocation with Burgers vector a [001], see
Fig. 6 at C.

(b) 5.4% Shear Strain

The dislocation substructure is very similar to that shown in Fig. 3
for a shear strain of 3.7%. However, dislocation tangles are more fre-
quent in this specimen and are separated by regions of low dislocation
density which are approximately 7 u in diameter. In addition, Fig. 7
at A and B shows that dislocation dipoles are present lying perpendicu-
lar to [111] and [111], the active slip directions in the (011) slip plane
indicating that slip on the primary slip plane is not confined to the
most favorably oriented slip direction even at this early stage in defor-
mation. Again, the dislocation distribution is constant throughout the
compression specimen up to 2 mm from the compression faces. The

Burgers vectors of dislocations are% [111], % [T11], % [T11], and a[001].
The latter dislocations with Burgers vector ¢[001] are formed in short

. . . . . a —~
segments by interaction of dislocations with Burgers vectors 9 [111]

and% [111] as described previously.
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(d)
Fig. 6. (Continued)
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(¢) 12.64% Shear Strain

At this stage in the deformation process dislocation tangles are well
developed and contain large numbers of primary dislocations with
edge orientation, (see Fig. 8). Many screw and mixed dislocations are
observed and short segments of secondary dislocations on inclined
planes can be seen at 4. A typical Burgers vector analysis is shown in
Fig. 9. In this area, in addition to primary dislocations with Burgers

vector g— [111] at 4 and secondary dislocations with Burgers vector

4 [Tl 1] at B, a long segment of dislocation with Burgers vector either
9 g seg g

a[001] or a[010] can be seen at C. This segment of dislocation with
Burgers vector a(001) is quite different from the commonly found
short segments of the same Burgers vector described previously which

. . . . . a
are formed by the interaction of two dislocations with Burgers vectors 5

[111] andg [111] since it is relatively wavy in nature. Such observations

are evidence for the generation and possible motion of Burgers vectors
a(001) in agreement with the observations of Foxall, et al. [16] on
niobium, and the predictions of Reid [17]. Burgers vectors identified

at this strain are% [1T1], % [111], % [111], and «[001].

(d) 19.88% Shear Strain

The tangled dislocation arrangement is well developed, and again
contains many edge component primary dislocations (see Fig. 10). The
dislocation configuration is again independent of the position of the
foil in the compression sample. The Burgers vectors of dislocations

which have been identified include% [171],% [11 l],% (1117, and a[001].

Most secondary dislocations are observed in or close to tangles and the
latter a[001] Burgers vector is usually observed as a result of interac-

tions between dislocations with Burgers vectors% [111] and% [111].

(e) 29.7% Shear Strain

At this stage, a rudimentary cell structure is formed (see Fig. 11) and
again the dislocation configurations do not vary with the position of
the foil in the compression specimen. Figure 12 shows a tangle under
different reflections. It can be seen that, while many primary edge dis-
locations are present in the tangle, large numbers of secondary dislo-
cations are also present. Burgers vectors determined at this strain in-
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I A L
clude [I1T1] at A in Fig. 12, 5

[T11]. % [TT1], and «[001]. Most sec-

. . . . . a o~ .
ondary dislocations including those with Burgers vector [111] which

were obscerved between tangles at small strains seem (o be associated
with the tangles at this strain. 'The majority of dislocations with Bur-
gers vector a[001] are produced by intersection interaction as de-
scribed previously.

Strain Rate 1.5 X 10% se¢™!

Specimens were deformed to shear strains of 2.8%, 6%, 12%, and
30%. The characteristic dislocation substructure corresponding to each
strain 18 described separately.

(a) 2.8% Shear Stram

A typical area is shown in Fig. 13. Long, heavily jogged screw dis-

locations are present lying parallel to [111] and [111] directions and in

addition small dipoles are visible at /. In addition there are large areas
10-15 w in diameter free of dislocations. Figure 14 shows a Burgers

L . a ;= . .
vector analysis. Dislocation A has Burgers vector o [111], dislocation B,

— . . LA = . .
[111], and dislocation €, > [[11]. An example of a common interac-

R

tion is visible at €7 to produce a short dislocation segment with Burgers
vector a[001]. The general dislocation configurations are the same
throughout most of the length of the specimen although the disloca-
tion density Huctuates somewhat. Within 2 mm of the compression face
the dislocation density is higher, and we have observed one case where
the dislocations are of unusual character (see Fig. 15). In this case long
dislocations with Burgers vector [ 100] are present at A. Such long seg-
ments are unlikely to form from dislocation interactions on the basis
of the results described previously, and it is concluded that friction
eflects necar the compression face promote slip with «(001) Burgers
vectors at high strain rates (r.c., stress levels). Thus even at this carly
stage in the deformation process dislocations with Burgers vectors
a ‘

— {
S5

[1T1], él, [T11]. and «[001] are observed.

(b) 6% Shcar Strain
A typical arca is shown in Fig. 16 which shows mainly primary screw

dislocations lying parallel to the [l ] divection together with short in-

. . . : @~ . . .
clined dislocations with Burgers vector 5 [111]. Short dislocation seg-
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(c)

Fig. 9. (Continued)
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Fig. 12. (Continued)
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(d)
Fig. 14. (Continued)
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(d)
Fig. 15. (Continued)
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ments with Burgers vector ¢[00 1] are formed at interaction points such
as A. There is a high density of small dislocation edge loops present.
There is some fluctuation of dislocation density with position of the
foil in the specimen although the general features of the dislocation
configuration remain constant. Burgers vectors identified are the same
as those described for 2.8% strain at this strain rate.

(¢) 12% Shear Strain

At this stage of deformation the primary dislocations still remain
largely screw in character, as shown in Fig. 17a, and there is a high
density of primary edge dislocation loops. However, the dislocation
density still varies from point to point in the specimen. For example,
Figs. 17b, ¢ show typical arcas in other parts ol the compression
specimen. Figure 17b shows an area of lower dislocation density but
with essentially the same dislocation configuration as Fig. 17a. How-
ever, Fig. 17¢is taken from another area and shows a slip band cutting
the slip plane. Here the dislocation density and configuration are quite
different from those sh()wn in Fiqs 17a, b. Dislo(‘;ui(m Burgers vectors

identified at this strain are — 9 [l 1 l], 5 [l 1 1], 5 [1 11], and a[001]. Disloca-

tions with the latter Burgers vector are formed by dislocation inter-
action.

(d) 20% Shear Strain

A typical arca is shown in Fig. 18. The dislocation distribution is
more uniform from point to point in the compression specimen except
for occasional areas like that in Fig. 17¢ where secondary slip bands
cross the toil plane. There is a high density of primary dislocation
(lip()]es. Dislocation Burgers vectors identified at this strain are

[l 1 l], 5 [l 1], = [l 11], and a[001]. Again dislocations with Burgers

vector a[001] are gcncr;llly formed by interaction as described pre-
viously.
(¢) 30% Shear Strain

Thin foils obtained at this strain show a high density ot primary
screw dislocations and dipoles (see Fig. 19). There is still no dislocation
tangling. Again it is found that the dislocation configurations are con-
stant from point to point in the compression specimen except in areas
where secondary slip bands cut the primary slip plane. Burgers vectors

identified are - [1 1 1], 5 [1 1 l] [l 11], and a[001]. Again the latter Bur-

gers vectors are [)TO(lUCed by dlSlOCEltl()n interaction.
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Fig. 19. ¢ = 1.5 X 10® sec™’, 30% shear strain, (011) foil. A typical area.
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Dislocation Densities

Both the total dislocation density and the primary dislocation density
are related to the flow stress at both the high and the low strain rate by
an equation of the form (see Fig. 20),

T=71+ aubﬁ

where 7 is the flow stress, a is a constant, u is the shear modulus, b the
Burgers vector, and N the dislocation density. It is not clear what
significance can be attached to the term 7,. For example it has been
termed the friction stress [18-21] or the stress necessary to move one
dislocation in the absence of others [22, 23]. However, it has also been
pointed out [24] that 7, can be considered to be simply a result of the
linear interpretation of the data relating 7 and VN and has no intrinsic
significance. Values for a and 7, obtained from Fig. 18 are a4y =
0.134, apimary = 0.198, 74 3.45 kg mm™ at a strain rate of 1.2 X 10™*
sec™! and auy = 0.0375. oppimary 0.05, 7= 21.35 kg mm™ at a strain
rate of 1.5 X 10 sec™".

The dislocation density is a linear function of the plastic strain with
slope 1.25 X 107" ¢m™ as shown in Fig. 21. Thus it can be concluded
that the dislocation multiplication rates are essentially the same at both
strain rates.

Finally, for comparison purposes the density of dislocation dipoles
has been measured as a function of strain at both the high and the low
strain rates. The results are summarized in Table 4.

Table 4

DirorLE DENSITY vS. PLASTIC SHEAR STRAIN

€=1.2X 107 sec™! €= 15X 10 sec!
Shear Strain, Dipole Density, Shear Strain, Dipole Density,
% fce X 10" % Jee X 10
3.7 7.5 2.8 2.25
5.4 9.0 6.0 15.5
12.64 14.75 12.0 35.0
19.88 22.75 20.0 58.0
29.7 32.75 30.0 88.5

It can be seen that the density of dipoles at the high strain rate is
approximately-twice that.atthe low.strain rate for a given strain. This
result is in general agreement with the qualitative estimate of Gilbert,
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Fig. 20. The relationship between the flow stress and the square root of the dislocation
density (a) € = 1.2 X 107 sec™, (b) 1.5 X 10® sec™".
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Fig. 21. The relationship between the plastic strain and the dislocation densiry.

et al. [25]. on deformed molybdenum. However, in the present work
measurements of dipole density at the low strain rate were under-
estimates because dipoles in tangles were not included because they
could not be resolved. Consequently, it is concluded that the actual
dipole density is probably not too different at the two strain rates.

DISCUSSION

One of the most interesting features of the mechanical property
measurements is the two-stage relationship between the lower yield
stress and the logarithm of the strain rate shown in Fig. 4. It is possible
to analyze this relationship in terms of an activation volume, V¥, and
an associated rate-controlling deformation process for each linear
stage using current theories of thermally activated flow [3, 26]. With
this approach one obtains V* = 264* for the low strain rate range,
subsequently designated range 1, and V'* = 54” for the high strain rate
range, subsequently designated range 2. Thus range 1 corresponds
generally to the high range reported by Mitchell, et al. [8]. for single
crystals of niobium and range B reported by Fourdeux and Wronski
[7] for polycrystalline niobium. The present range 2 corresponds
reasonably well with range 2 for iron [1, 3].

It would be dangerous to draw any definite conclusion as to the
operative rate-controlling mechanisms for ranges 1 and 2 from the
valuesrofractivationgvolumesgivengabove. In the present work we have
plotted lower yield stress for our specimens, which is, in practice, the
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stress necessary to produce the Luders strain in the specimen. Figure 3
shows that the shape of the yield point, and consequently the strain at
the end of the Luders elongation, varies with strain rate. As a result of
this our flow stress values are not produced for constant strain. Fur-
thermore, the more accurate method for determination of activation
volumes involves rapid strain-rate changes during the test, and the
analysis of the results requires that the dislocation substructure re-
mains unchanged during the strain-rate change. However, as pointed
out previously, the lower yield stress values in Fig. 4 are measured at
different strains, i.e., different dislocation densities and configurations,
and consequently the above values of activation volume cannot be con-
sidered to be accurate. In this it is somewhat surprising that there is
such a well-defined linear relationship between lower yield stress and
the logarithm of the strain rate. It should be further pointed out that,
for the reasons mentioned previously, the presence of a yield point
engenders difficulties in making distinctions between stages with simi-
lar slopes for the lower yield stress vs. logarithm strain rate relation-
ship. In consequence, some of the small changes in slope of the lower
yield stress vs. log € graph which have been observed in polycrystalline
materials [4, 6, 7] cannot be regarded as significant evidence for the
operation of different rate-controlling deformation mechanisms. In
other work on single crystals [5, 8] which do not exhibit a yield point,
small changes in slope of the 7, vs. log é curve have been observed that
appear to be more reliable than the data on polycrystalline materials.
However there is some evidence [8, 16, 27, 28] that the value of 7, in
b.c.c. single crystals is sensitive to work hardening in the microstrain
region. Consequently, small changes in slope of the 7, vs. log € curve
may reflect the different microstrains at which 7, is measured through
the strain-rate dependence of the microstrain work-hardening rate,
rather than the operation of different rate-controlling mechanisms.
The large differences in slope of Regions 1 and 2 probably reflect a
difference in deformation mechanism, particularly since the transmis-
sion electron micrographs indicate that the dislocation substructure is
very different after deformation in ranges 1 and 2. Rosenfield and
Hahn [1] have suggested that range 1 reflects the stress dependence of
the edge dislocation velocity. However, in the present case the stress
dependence of the dislocation velocity measured by Guberman [29] is
much lower than the strain-rate dependence of the lower yield stress in
range 1, although Guberman has shown that the dislocation velocity vs.
stress relationship is dependent on specimen purity and so may be, in
fact, parallel to the lower yield stress vs. log € for our particular ma-
terial. However, both edge and screw dislocations are present in ap-
proximately equal densities in thin foils taken from the specimens de-
formed at a strain rate of 1.2 X 10™* sec™ and in the specimens of
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Foxall, et al. [16]. It is concluded therefore that the screw and edge
components are behaving in essentially the same way in range 1 and
that it is improbable that the behavior of edge components is rate
controlling. At present it is not clear what the rate-controlling mecha-
nism for deformation is'in range 1. Range 2 is considered by Conrad
[3], Dorn and Rajnak [2], and Arsenault [30] to reflect a rate-con-
trolling process which consists of overcoming the Peierls stress by the
nucleation of double kinks on screw dislocations. This mechanism is
consistent with the long heavily jogged dislocations observed after de-
formation at a strain rate of 1.5 X 10? sec™. and the absence of edge
dislocations in these specimens.

It is notable that there is no stage 1 work hardening observed in
these specimens, despite being oriented for single slip. As pointed out
previously this would be expected if multple slip occurred from the be-
ginning of deformation, as evidenced by the constant orientation of the
compression axis throughout deformation. The transmission electron
micrographs support this contention since dislocations with Burgers
\'eclors% [111]. % [111], % [111], and a[001] are observed even in the
initial stage of deformation =3% shear strain at both the high and the
low strain rates.

The work-hardening rate is low compared with that observed by
other workers [16, 27, 31] for stage 2 in niobium for our specimens.
However, this is probably caused by the high impurity content of our
specimens since Mitchell, et al. [8] have shown that the work-harden-
ing rate in stage 2 increases with increasing number of zone passes in
the electron zone refining apparatus. The dislocation configurations
observed in the specimens deformed at low strain rates are similar to
those found on the primary slip plane in stage 2 by Foxall, et al. [16],
Bowen, et al. [27], and Taylor and Christian [39], although there are
some differences. For example, the present specimens show more
evidence of secondary slip, i.e., secondary dislocations are not confined
to dislocation tangles, see for example Fig. 6. This effect is probably
due to the strong end eftects exerted on the present specimens. A fur-
ther difference is that dislocation multipoles have not been observed
in the present specimens, neither have dislocation networks. It is not
clear why dislocation networks do not occur; however the absence of
multipoles is probably directly related to the absence of stage 1 harden-
ing in the present tests. Foxall, et al. [16] have pointed out that the
multipoles are similar to the loose arrangements of wide dipoles ob-
served in stage 1, and consequently their occurrence is probably re-
lated to a process occurring during the transition from stage 1 to
stage 2.

The dislocation arrangements in the specimens deformed at the high
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strain rate are similar to those observed at low temperatures in
niobium [16, 31] except that again there is more secondary slip for the
reason outlined above. As pointed out by Arsenault and Lawley [32]
long straight dislocations and the absence of tangling and cell forma-
tion appears to be associated with a high effective stress 7* and a low
work-hardening rate, in agreement with the present results.

At both the high and the low strain rates the flow stress is a square
root function of the total dislocation density and the primary disloca-
tion density. However, the values for the slope of the line « are very
different. Indeed, the value of « at low strain rates agrees reasonably
well with that found by Taylor and Christian for niobium in compres-
sion but is only § of that found in tension [33]. Thus, it appears that
low « values are associated with compression tests.

Most work-hardening theories predict a square root relationship be-
tween the total and primary dislocation density and the flow stress [34]
as found in the present work. Consequently, it is not possible to dif-
ferentiate between work-hardening theories on this basis. The greater
rate of work hardening at low strain rates is not caused by a higher dis-
location density at the low strain rate because the dislocation density at
a given strain is independent of strain rate, see Fig. 21. Rather it ap-
pears that the dislocation cell walls are more effective hardeners than
the more homogeneous dislocation distribution encountered at the
high strain rate.

It is interesting to note that the dislocation density at a given strain
is independent of strain rate. Thus, it can be inferred that the multipli-
cation rate with strain is independent of strain rate, and consequently
the number of mobile dislocations is probably the same over the strain-
rate range investigated, assuming that the same cross-slip multiplication
processes occur at the high and low strain rates. This assumption is
consistent with the substructure observed in the electron microscope.

CONCLUSIONS

1. The strain-rate dependence of the room temperature lower yield
stress of single crystals of niobium in the strain-rate range 107 to
6.5 X 10% sec™* can be described by two consecutive semilogarithmic
relationships of the form

Tyield — X + B log €

where € is the applied strain rate and «a and 8 are constant over each
strain-rate range.

2. The dislocation arrangement after deformation at strain rates of
1.2 X 107* sec™! and 1.5 X 10° sec™* indicates that there is a different
rate-controlling mechanism operative at low and high strain rates.
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. It is not clear what rate-controlling mechanism operates at low

strain rates. At high strain rates the dislocation configurations are
consistent with a Peierls mechanism.

The tangles and cell structure formed by deformation at a strain
rate of 1.2 X 107 sec™! is a more effective hardener than the uni-
form dislocation distribution formed at a strain rate of 1.5 X 103
sec™ !

The relationship of the total, or primary. dislocation density .V 1o
the flow stress 7 has the form

T=1T1, 1+ aub VN

at both the high and the low strain rates.

There is a linear relationship between the total dislocation density
and the plastic strain at high and low strain rates which is inde-
pendent of strain rate.

The mobile dislocation density is independent of strain rate.
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CONSTITUTIVE RELATIONSHIPS
FROM IMPACT STUDIES

WiLLiam J. GILLICH

U.S. Army Ballistic Research Laboratories
Aberdeen Proving Ground, Maryland

ABSTRACT

It was discovered through free flight impact tests using specimens traveling at a con-
stant velocity prior to impact that one form of the detormation curve for high purity
aluminum and copper single crystals could be represented as a ¢ power law. This partic-
ular deformation law as found to be predictable using the stress and strain ratios of the
aggregate theory of Taylor. These predictions were made on the basis of the deforma-
tion of polycrystalline metals.

A generalization of the § power law constitutive relation is shown to account for uni-
axial deformation that occurs for both single crystal and polvcrystalline specimens sub-
jected to static or dynamic deformations. This formulation is related to the parabolic
tvpe of constitutive development proposed by Bell.

INTRODUCTION

The phenomenological science of mechanics rests upon certain field
postulates which take the form of balance or conservation equations.
Conservation laws for linear momentum, moment of momentum,
mass, and energy supply a rational basis for all continuum theories.
These conservation laws, either as field equations or in the jump con-
dition form, are, however, insufhicient to yield specific answers to prob-
lems and we are left with an undetermined situation. The necessity of
obtaining a determinate mathematical system leads to the so-called
constitutive assumption. A functional relation between stress o;; and the
motion x; = x;(X;, t) of the body is usually supplied in tensorial form.
These equations, nine of which are needed in general, define a ma-
terial. The postulates of mechanics including both the field equations
or jump conditions and the constitutive assumption rest on a founda-
tion of physical experience and experimental data. Forms of the
constitutive function are usually assumed and a coherent mathematical
theory is then developed from the balance conditions.

241
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For example consider the motions permissible in the theory of
linear infinitesimal elasticity where Hooke’s law is the postulated
constitutive assumption. For certain of these motions the field equa-
tions give a symmetric stress tensor and together with the constitutive
equation give a hyperbolic equation of motion. D’Alembert’s solution to
this equation of motion U; = F{(Xw; = Ct), where F; are arbitrary func-
tions and the v; are direction cosines, gives a wave solution of unchang-
ing shape and of constant velocity C. Experiments in the propagation
of elastic waves have shown this solution to be accurate to the extent
that general agreement is obtained as to the form of Hooke’s law. The
dynamical portion of the theory of linear elasticity is now used as one
of the main sources of establishing constitutive data where ultrasonic
methods are employed. Wave velocities are measured and elastic con-
stants are inferred.

Another example where a logical mathematical model consistent
with and developable from classical field theory is the deformation of
materials at very high pressures. A material is considered as a perfect
fluid defined by a constitutive assumption known as the caloric equa-
tion of state which in practice is represented by so-called Hugoniot
curves. Since very high pressures are most conveniently generated by
the propagation of steady-state shock waves the conservation equations
are now given as jump conditions instead of field equations. The nature
of these jump conditions allows the determination of the Hugoniot
curves through shock and particle velocity measurements. Constitutive
data for solids under very high pressures developed from shock wave
studies are found to be generally in good agreement throughout the
literature and are considered representative of materials under the
given loading conditions.

These examples are given to point out the historical fact that only
through self-consistent dynamic theories have reproducible constitu-
tive data been developed.

The alternative methods of developing constitutive data from direct
measurements in homogeneous unidirectional deformation fields, both
static and dynamic, are found to give results that in general disagree [1].
One of the difficulties with these approaches is that little theory exists
to serve as a guide. As a consequence agreement on the proper vari-
ables to describe the deformation does not exist. Secondly the methods
of measuring the proper variables directly, at least in the case of dy-
namic deformation, are difficult if not impossible. For instance in the
case of dynamic plasticity there is no way to accurately measure stress
and only a few accurate methods of strain measurement. Lack of
standardization of materials and their state before the desired defor-
mation, and lack of control of ambient conditions add to the con-
fusion.
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Fortunately, in the case of dvnamic plasticity, there is recourse to a
mathematical model which supplies a convenient way to substantiate
the theory and to supply constitutive data. For deformation under a
uniaxial stress condition the field equations supply a quasilinear
hyperbolic equation of motion it the constitutive assumption is taken
such that the engineering or 1st Piola Kirchhoff [2] stress is a single
valued funcuon of some deformation measure. This deformation
measure can be interpreted as a finite longitudinal contraction or ex-
tension. To avoid discontnuities the slope of the deformation curve
must be greater than zero. and the second derivative must be less than
zero. The equation of motion has a simple wave solution l;'=f(e)
(where U is the particle velocity and € the finite strain) which becomes
a centered simple wave for impact at constant velocity. This solution
allows the determination of wave speeds from experimentally meas-
ured strain-time data obtained at various material points along speci-
mens as well as the prediction of maximum values of deformation for
given impact velocities. These predictions are easily tested and once
they are established a specific constitutive equation can be determined.
This one-dimensional theory was first devised by von Karman [3], Tay-
lor [4] and Rakhmatulin [0] for semi-infinite specimens impacting at a
constant velocity. This work shall be referred to as the finite amplitude
wave theory of solids when used in its material coordinate form.

The work to be presented here originated from impact studies where
the semi-infinite specimens were single crystals of high purity alumi-
num and where the finite amplitude wave theory was found to be the
appropriate description of the deformation [6]. Experimentally sub-
stantiation of the theory was accomplished with the use of diffraction
grating strain gauges [7]. Strain-time information obtained during
passage of the wave front at various gauge positions supplied the nec-
essary data. The constitutive equation that was found to govern the
predominant type of deformation was a 1 power law. This § power de-
tormation law was found to be related to the static polycrystalline ten-
sile deformation using the stress and strain ratios of the aggregate
theory of Taylor [8] and Bishop and Hill [9]. Another } power defor-
mation curve was developed from these impact studies which could
not be accounted for through the aggregate ratios.

Studies of finite amplitude waves in high purity copper single crystals
of the [111] orientation also revealed a 1 power constitutive equation
which could be related to polverystalline tensile data. However the 1
power type deformation was not found to be the predominant form of
deformation law for copper

The occurrence of + power deformation curves from these two im-
pact studies and similarity to a parabolic form of a constitutive equation
proposed by Bell [10- 12] lead to a general form of the § power law.
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This representation is shown to categorize certain aspects of uniaxial
deformation for six different metals. The form of this law for uniaxial
polycrystalline deformation is:
T 2
o=p (1 ——) e (1)
T"I

where o is the nominal engineering stress, € the nominal strain, T is the
test temperature and 7, the melting temperature. Both temperatures
are in degrees Kelvin. The constant B, takes the following form:

Bo = (3)"*u(0)M,
My=.0212, r=1,2,3"--.

(2)

Here u(0) is the isotropic elastic shear modulus u(7) at T=0, M, i1s a
dimensionless constant and r is an integral index. The aggregate rela-
tion in the following form:

__"_:

g Y

T €

where (3)
m=3.06

used in conjunction with (1) yields a deformation law in terms of re-
solved shear stress, 7 and strain, vy for single crystals:

T\2
T= B (1 - T_m> 'YIH “)
where
2 ri4 M
Bo=(5) w0 72 ©)

It was first discovered that the coefficient given by (5) of the § power law
representation took this form from the observation:

Bro (parabola) = B, (z power law). (6)

The B, (parabola) is the coefficient used in Bell’s [12] development of
a general constitutive relation. Equation (6) first appeared in the single
crystal work with aluminum [6]. The form of (5) was developed
through this comparison.

The data that supports the form of the constitutive equations given
as (1) and (4) are shown in Table 1. Table 2 supplies additional infor-
mation for the tests referred to in Table 1. Figures 1 and 2 show two
different methods_employed_to_obtain the data of Table 1. Figure 1
gives a log-log determination of a power law of the form o= Be®. Both
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Table 1

Brotkg/mm?) B, (kg/mm?)
Material TCK) r  wp(O)kg/mm?) (Predicted) (Experimental) Ref.

AL (99.99%) 300 3 3110 19.01 11.86 a
300 19 189 183 a
300 12 4.89 4.88 b
140
1950 19 4.89 479 ¢
300
300 16 5.21 3.35 d

- =7 <

Ag (99.97%) :'2’} 4 3170 11.06 10.07 e
/

Cu (99.999%) 300 6 5.086 14.49 14.12 f

Mo (99.95%) 724

L)/
; w 8 14.49 14.35 g
-q%

NTIRE 15,400 921.59 91.65 h
Mild Steel 300 2 8.420 36.07 36.46 i
= .38% C
Ta (99.84%) 591

701F 2 7.010 99.95 99.55 j

813

a. W. J. Gillich, Phil. Mag. 15, 639 (1967).
b. U. S. Lindholm and L. M. Yeaklev. J. Mech. Phvs. Solids 13, 41 (1964).
c. R.P. Carreker and W. R. Hibbard. J. Metals 9, 1157 (1957).
d. W. N. Sharpe, Ph.D. Thesis, The Johns Hopkins Univ., Baltimore, Md. (1956).
e. R. P. Carrcker, J. Metals 9, 112 (1957).
f. W. J. Gillich, unpublished (1967).
g. R. P. Carreker and W. R. Hibbard, Acta Metallurgica 7, 654 (1953).
h. R. P. Carreker and R. W. Guard. J. Metals &, 178 (1956).
i. D. Tabor. Proc. Rov. Soc. A 192, 247 (1948).
J. W. Pugh. Trans. of the ASM 48, 677 (1956).

B and “«” may be determined from such plots. The static tensile data of
(,anel\er and Hibbard [13] for copper are used as an example of this
method. The stress and strain have been changed from the true stress
and true strain originally given. Figure 2 is a o vs. € plot used for the
same purpose. The molybdenum data from static tensile tests of Car-
reker and Guard [14] changed to nominal stress and strain are plotted
in Fig. 2. In practice these plots served only as a guide to determine
which regions of the stress strain data were of the 1 power law form.
The. constants.of the equations-were calculated by statistical methods
over the predetermined regions. The predicted values in Table 1 are



246 William J. Gillich

Table 2
Material Annealing Specimen
and Temperature Grain Diameter Type of
Structure Tm(°K) (°K) Size (mm) (mm) Test Ref.
Al (99.99%) 933 — Single 25.4  Impact a
Fce Crystal
— Single 25.4  Impact a
Crystal
— Single 12.7  Split Hopkin- b
Crystal son Bar
724 .065 .762  Static c
Tension
Chilled Cast 4.76 12.7  Static d
Tension
Ag (99.97%) 1234 974 017 .508 Static [¢
Fcc Tension
Cu (99.999%) 1356 — Single 254  Impact t
Fcc Crystal
524 012 762 Static g
Tension
Mo (99.95%) 2898 1374 .18 762 Static h
Bee Tension
Mild Steel 1808 - — — Static i
(= .38% C) Compression
Bce or Tension
Ta (99.84%) 3269 — 0386 to  .254 X Static j
Bee 051 5.08 Tension

given by (5). Table 2 also supplies the values of the index r and the
shear modulus w(0).

Since the index r is allowed to take on the values 1, 2, 3, etc., it offers
a series of constants, B9, for a given material. This distribution of 8,
in this series is such that as r increases, the values of B8,y get closer to-
gether. Consequently as a measure of error and to point out that the
series of B,y are not sufficiently dense so that any 1 power law may fit
this scheme, consider the aluminum data of Sharpe [15] of Table 2.
The error from the predicted value is 4.3% while the difference from
the values that would occur for r = 15 and 17 are 10.90% and 9.34%
respectively. This example was chosen since the r of 16 is the largest
that occurs in Table 1 and the error of 4.3% is also the greatest. The
error in the predictions in all other cases is less than 2% where the dis-
tribution is less dense.

The type of test from which the deformation data of Table 1 were
developedsisiindicated in,Table 2. Single crystal deformation and poly-
crystalline deformation are related in the case of copper and alumi-
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Fig. 1. Static tensile polycrystalline deformation curves for copper (Carraker and

Hibbard).

num. Polycrystalline data alone are given for silver, molybdenum, mild
steel and tantalum.

The § power law developed as the predominant type of deformation
from finite amplitude wave studies in high purity aluminum single
crystals is represented by the r= 12 entry of Table I. The r= 3 entry
represents another § power law that also occurred [6]. The split Hop-
kinson bar experiments of Lindholm and Yeakley [16] for high purity
single crystals gives the r= 12 law over a limited portion of the im-
posed deformation. Table 3 gives the resolved data from the tests of

range of nominal strain where
r 1 agrees throughout the total
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Fig. 2. Static tensile polycrystalline deformation curves for tantalum (Pugh).

deformation. The lack of correlation in these tests, throughout the
indicated range, with the impact tests could be due to a short specimen
size (12.7 mm X 12.7 mm) which would cause constrained lattice rota-
tion. Fleischer [17] showed that two types of lattice rotations (Fig. 3)
can occur during compression of single crystals. One rotation which
occurs is opposite in sense from the one that occurs in tension where
the specimen axes rotate on a great circle connecting the [101]
direction and the specimen axes. The other rotation is where the speci-
men axes rotate towards the normal to the slip plane (the [111] direc-
tion). Fleischer’s [17] experiments (Fig. 4) in static compression
rred near the constrained ends
ter of 40 mm long single crystals
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Table 3

Power Law (1= By") Frr To SpLit HOPKINSON
BAr ALuMINUM SINGLE CRyYSTAL TESTS
(LiINpHOLM & YEAKLEY)

Test No.  «a Ae(%) By(kg/mm?)
1 0.25 0.05-9.6 21.10
2 No Power Law Fit
3 0.25 0.05-2.18 23.07
4 0.5 0.05-0.66 -
0.25 0.81-9.1 26.23
5 0.25 0.04-0.60 19.18
6 0.5 0.35-1.2 —
Ave. 22.38
Bro = 4.88 kg/mm*

of copper and aluminum that were 12 mm square. The single crystals
used in the impact study were 254 mm long and no measurement was
made within 25.4 mm or one diameter of the impact face.
Deformations that are described by i power laws occur within a
specific temperature range. This type of deformation is also sensitive
to the inital state of the material. The studies cited for the poly-
crystalline tensile tests in Table 1 for aluminum, silver, copper and
molybdenum were conducted for a variety of grain sizes and annealing
temperatures. The § power law is the appropriate description for the
deformation of aluminum, tantalum, and molybdenum tor the grain
size and annealing temperatures given in Table 2 while its applicability
is less obvious in the cases of copper and silver. Figures 5 and 6 show
graphically the region where the power law exponent is { for the grain

flo] ]
I / S

[lool‘\(\/ o)
\ .I

N x J

Fig. 3. Lattice rotation during compression.
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size and annealing temperatures given in 'Table 2. The distinct platean
for aluminum at « = 0.25 and the maximum at this value for tantalum
and molybdenum supply impetus for categorizing this type of poly-
crystalline deformation. "The regions where ¢ = 0.25 are not as distinct
for copper and silver (Fig. 6). The solid line portions of the curves in
Figs. 5 and 6 have been recalculated using nominal stress and strain
while the broken line portions of these curves are displaced torms of
the original data.

Instead of interpreting the § power law as a deformation law it may
be considered as a locus of a series of parabolic deformation curves
where each parabolic segment is terminated by a transition ol physical
significance. The generalized treatment Bell [12] gives of deforma-
tion curves has the capability of handling forms of deformation
which were previously described by power laws with a variety of
exponents. For example, for the materials described in Table 1,
Figs. 5 and 6 show a continuous vartation of power law exponent
with temperature. Bell [12] has shown that a formulation, with pre-
dictable transitions, and a single power law exponent (¢ = (.5) can
be used to describe the situation. Bell postulates that material stability
1s the rationale that supports this formulation. Considerable order
is obtained when this dcseription s appliecd i conjunction with
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the # power law. For the polycrystalline tensile data given in Table 1
Bell [12] gives a series of parabolic segments defined by the equations:

T S
o= (1 —T—m> el (7)
Bo= (%)"/2#‘(0)30 (8)
B,=0.0280, r=1,2,3-""

with the exception that r takes on only odd values. This situation is
shown in Fig. 7 where squared stress is plotted against the strain. The
parabolas of (7) appear as straight line segments and the ; power law of
(1) appears as a limiting parabolic curve. The segments always meet at
Bell’s transition strains of € = 1.45%, 4.25%, 7.5%, 12.5%, etc. Conse-
quently the § power law’s usefulness in classifying deformation may
also be extended to a study of the behavior of transitions from different
deformation states as suggested from the work of Bell.

SUMMARY AND CONCLUSION

The constitutive equations of mechanics which are most universally
accepted and from which general consistency is obtained have as a
basis a theory of wave propagation. The theory offers a mathematical
model formulated from either the field equations or jump condition
form of balance laws for momentum, moment of momentum, mass and
energy and a general constitutive assumption. Constitutive assump-
tions of the form of Hooke’s law and the caloric equation of state were
taken as examples where linearity and a specified functional de-
pendence gave specific constitutive equations for a great number of
real materials. These equations are established through inference from
particle velocity and wave speed measurements.

The finite amplitude wave theory offers an analogous model for the
development of constitutive equations for plastic deformation. This



Impact Studies 253

theory is used here to establish a form of a deformation law which is
found to be related to tensile polycrystalline deformation. The dis-
covery that the coefhcient of one form of the proposed law is numeri-
cally equal to the coeflicient of a law suggested by Bell allowed a more
general form of the proposed law. This more general form of the law,
which is a 3 power law, was found to describe the deformation within a
limited temperature range and for a given annealed state for six dif-
ferent metals. The 1+ power law not only offers an analytic description
tor certain types of deformation, but has a potential use in the study of
transitions from various deformation states as proposed by Bell.
Specifically the § power law can be considered the bounding curve for
tensile polycrystalline deformation which proceeds in a piecewise
parabolic manner from different states with predictable transitions.
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PREDICTION OF ELASTIC-PLASTIC WAVE
PROFILES IN ALUMINUM 1060-0
UNDER UNIAXIAL STRAIN LOADING

A. H. Jongs, C. J. Mampex, S. J. GRrREEN, aNnD H. CHIN

General Motors Technical Center
Warren, Michigan

INTRODUCTION

In an ideally elastic-perfectly plastic material, in which the elastic
moduli are constant, a high intensity wave propagating from the im-
pact interface of two flat plates has a two-wave structure as shown in
Fig. 1. The elastic wave propagates at velocity

A+ 2u
1
N . ()
with intensity
A+ 2u
o Y (2)

where Y is the yield stress of the material in a uniaxial stress test, A and
w are Lame’s constants, and p is the material density. This is followed
by the higher intensity plastic wave travelling at a slower velocity

A+ (%)p._
V Y (3)

In such a material the two-wave structure will prevail at all pressures.
However, for a real material, the two-wave structure is modified by the

Plastic Wave -—=—1——

Elastic Wave ——a—g—

Fig. 1. Elastic plastic wave propagation.
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increased stiflness with pressure. The increased stiffness will mean a
higher plastic wave velocity for higher intensity waves and, eventually,
the plastic wave will travel faster than the elastic wave.

In this paper we will consider the cffect strain rate has in modifying
the structure of the two waves shown in Fig. | in a pressure region
where we can assume that the elastic moduli are constant. It is obvious,
from inspection, that.at the elastic and plastic wave fronts there exist
high strain-rate regions. It is in these and associated relaxation regions
that strain rate effects will influence the loading wave profile. Most
dramatic, and the most casily analyzed cflects lie at the elastic wave
front. Specifically, we will consider wave profiles in aluminum alloy
1060-0 which has been tested at strain rates from 1073 to 10? sec™! at
the Material and Structures Laboratory of Manutacturing Develop-
ment, General Motors Corporation [1]. The results of these tests and
others will be used to predict the wave profiles from flat plate experi-
ments, and these predictions will be compared with the experimental
results published by Sandia Corporation [2].

UNITAXIAL STRESS EXPERIMENTS

In these experiments, aluminum 1060-0 specimens, # inch in diam-
cter, were machined from plate stock. A photomicrograph of the ma-
terial, shown in Iig. 2, indicates it to be composed of large grains with
preferred orientation normal to the direction of loading. Chemical
composition and measured material properties are listed in Table 1.

Table 1
Chemical Analysis
Aluminum 99.60 percent
Silicon 0.11
Iron 0.28
Copper <0.01
Magnesium <0.01
Zinc <0.01
Density = 2.706 gm/cmn®
Longitudinal Wave Velocity = 6.33 km/sec

3.14 km/sec

Shear Wave Velocity

These specimens were tested in two separate instruments. A Medium
Strain Rate Machine (a gas-operated device, similar to machines used
by Clark and Wood [3] and Campbell and Marsh [4]), in which the
specimen is compressed by a piston travelling at a controlled velocity,
was used for determining | the stress-strain curves at strain rates be-
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DIRECTION OF IMPACT

20X

Fig. 2. Photomicrograph of the aluminum 1060-0 target material.

tween 0.001 sec™ and 40 sec™'. Strain was measured by an optical
extensometer and stress by strain gages attached to an anvil bar. Dur-
ing a test, plastic strain rate varies at most by a factor of 3, and it is the
average strain rate that is referred to in the results. A full description
of the machine, the corrections made for machine stretch, the method
of data reduction and specimen lubrication is given elsewhere [5].

A split Hopkinson bar apparatus was used to obtain stress-strain
curves at strain rates between 10* sec™ and 10? sec™". In this technique,
stress-strain curves are obtained by considering the transmission of a
stress wave through the specimen, which is sandwiched between two
elastic bars [6, 7). The method of analysis and discussion of variations
in strain rate, stress and strain throughout the specimen are given in

ent are plotted in Fig. 3 as engi-
ent average plastic strain rates.
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UNIAXIAL STRESS TEST ON ALUMINUM 1060—0

1.0 STRAIN RATE:

0.025 sec—! x

09 2-3 sec—! o

800-900 sec—! @

(ONLY A SMALL FRACTION OF THE DATA IS PLOTTED)

ENGINEERING STRESS (kb) —»=—

0.1

0 1 1 1 | I | 1 1
1 2 3 1 5 6 7 8

ENGINEERING STRAIN (per cent) —o=—

Fig. 3. Uniaxial stress strain curves at various strain rates for aluminum 1060-0.

Repeatability was within =13% tor the Medium Strain Rate Machine
and £5% for the split Hopkinson bar.

For f.c.c. erystal metals, such as aluminum 1060-0, Sceger [8] has
demonstrated that plastic flow is controlled by the thermally activated
intersection of ghde dislocations with forest dislocations, as long as the
shear stress is not great enough to effect intersection instantaneously.
Under these circumstances the applied shear stress alone is insutficient
to allow continuous motion of the dislocations. The dislocations are
momentarily arrested at barriers and their mean velocity is determined
by the frequency of the thermal activation over such barriers. If the
obstacles are localized and their ene

rgy is less than 50T, thermal acti-
ing dislocations over the obstacles
p across the glide plane.
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For activation energies greater than 50T, plastic flow is insensitive
to temperature and does not depend on strain rate.

In the case of very high shear stresses, dislocations can cut through
barriers instantaneously and continuously without the aid of thermal
fluctuations, since these do not have enough time to aid the jog forma-
tion. As a result, the jogs are formed instantly by stress alone. In this
region, Kumar [9] has suggested that the flow stress in aluminum is the
stress required to overcome the force exerted by forest dislocation bar-
riers. He visualizes this force as being composed of two parts, one is
dislocation velocity independent and the other is proportional to the
dislocation velocity. The velocity independent part is the force re-
quired to overcome long-range back stresses and cut through junctions
of the forest dislocations. This force increases with increasing strain or
dislocation density. The other component is a retarding force which is
proportional to the velocity of the moving dislocation and arises due to
various energy dissipative phonon and electron damping mecha-
nisms [9].

Data, shown in Fig. 3 for 1060-0 aluminum, as well as results from
other tests, have been compared with the Seeger [8] thermally activated
model for describing plastic flow. From this model, the stress at con-
stant strain can be presented by a logarithmic relation:

o = a4(€) + C(e) log & € = €uu
4)

o = 0 4(€) € < €erit

where o is the flow stress and €é” the plastic strain rate. Since the
theoretical foundation of this approach indicates that o4 and C are
sensitive to dislocation density and arrangement, the logarithmic de-
pendence of flow stress on strain rate is expected only for a well-
specified (cold-worked) structure. Also, where it is found that flow
stress at constant strain follows these equations, the inference is that
dislocation arrangement and density are insensitive to strain rate but
depend on strain. This condition is known not to hold for the very high
strain rates [10].

The comparison of theory and experiment is given in Fig. 4. It is
seen that the experimental stress-strain dependence is consistent with a
thermally activated process for strain rates in the range 0.03 sec™ to
over 40 sec™. At the higher plastic strain rate, the sensitivity increases
as indicated by the higher slopes of the lines. This behavior is consistent
with experiments reported for pure aluminum by Karnes and Ripper-
ger [11], Ferguson, Kumar and Dorn [12], and Kumar [9]. Also, it is
consistent with the concept described ecarlier, that at very high stresses
plastic flow is influenced by viscous dislocation motion [9]. Unfor-
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tunately for the 1060-0 aluminum insufficient data exist to allow a
more complete characterization of the linear-behavior region.

UNIAXIAL STRAIN ANALYSIS

Details of this analysis are as follows: Wave profiles are determined
analytically by the approximate method of solving the non-linear par-
tial differential equations using the finite difference technique. The
equations for one-dimensional strain in rectangular coordinates are

u __ oo

P o ©
. _u_p
€= x - p (6)

where p is the density, u the particle velocity, o the axial stress and the
dot indicates differentiation with respect to time. These, combined with
a constitutive equation and initial and boundary conditions, allow a cal-
culation of the wave propagation.

The constitutive equations are based on Hookean elastic response,
and incompressible plastic flow

o= A+ 2u)e — 2ue’ (7)

the stresses and strain being measured in the axial direction, together
with a relation describing plastic strain rate in terms of stress and strain.
Generalization of the uniaxial stress data to a uniaxial strain condition
is based on the equivalence of plastic work. Thus, appropriate stresses
and strains are obtained from the equivalent stress and equivalent
plastic strain rate, o and da”, respectively.

o= \/%[((T] — o)+ (02— o)+ (05— 0'1)2]
do® = 3V2[(de,” — de,P)* + (de,” — des’)? + (des” — de,P)?] (8)

where o,, 0,, o3 are the principal stresses and de,”, de,”, de;” the
associated plastic strain rates.

The finite difference form for equations 5 and 6 has been ade-
quately described in the open literature [13]. The degree of approxi-
mation depends on the mesh size and artificial viscosity coefficient
which are needed. The finer mesh size leads to better representation.
Unfortunately, refining the mesh size increases computer times which
can easily become prohibitive. Introducing artificial viscosity in the
program is essential for simplicity since it eliminates shock wave dis-
continuities. which_complicate finite difference formulations. Visco-
plastic behavior of the material does contribute some viscosity and
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there i1s a contribution inherent in the finite difference scheme. How-
ever, in the present calculations these were insufficient to dampen the
oscillations to an acceptable level. For this reason, a small artificial
viscosity has been introduced. Although this does not completely
elimate unwanted oscillations immediately behind the elastic pre-
cursor, they are reduced to an acceptable level. It should be pointed
out that care must be exercised in the choice of viscous terms as too
large an artificial viscosity would predict premature attenuation of the
elastic precursor. "Thus, as an independent check, the elastic precursor
has been studied separately.

Following the method outlined by Duval [14] the precursor decay is
governed by the equation

S )

where u is the modulus of rigidity and €” the plastic rate of strain. We
have relied on this method quite heavily to study the effect of various
terms in the strain rate representation. However, for a more complete
study of the effect of the rate term on the plastic flow, it is necessary to
obtain the wave profiles in the plastic wave front.

DISCUSSION

Using the uniaxial strain analysis described in the previous section,
together with various constitutive equations, wave profiles in 1060-0
aluminum have been calculated to compare with the experimental re-
sults presented in Reference 2. These results are for an iniual impact
stress of 2.6 kbars in the uniaxial strain configuration.

Using (4) to describe strain rate behavior of 1060-0 aluminum (for
which o, and C were evaluated at yield by extrapolation of the analyzed
test data), the elastic precursor attenuation is shown in Fig. 5. Attenua-
tion is seen to be very rapid and is in disagreement with the experi-
mental data reported by Karnes [2]. Thus, the Sceger [8] model pre-
dicts an almost instantaneous relaxation of the elastic overstrain to
plastic strain, as might be expected from the uniaxial stress-strain rate
behavior of this model (depicted in Fig. 6) which shows very little in-
crease in flow stress with strain rate. Due to the rapid relaxation, the
computed wave profiles shown in Fig. 7 are similar to that of an elastic-
perfectly plastic material. Thus, apart from the small viscous effect
introduced by the finite difference technique and artificial viscosity, the
profile is the same as that shown schematically in Fig. 1.

Improved agreement with experimental results can be obtained with
a model that predicts an in¢reascd rate sensitivity. In the higher strain-
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PRECURSOR DECAY IN 1060—0 ALUMINUM
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Fig. 7. Wave profile for flat plate impact test using the Seeger model.

rate region (above 107 sec™) where increased sensitivity was observed,
we rely on data presented by Ferguson et al. [12]. For strain rates from
107 sec ™ 1o 2.6 X 10% sec™ the empirical fit to their data is a relation of
the form

=T+ ay” (10)

where 7 is the applied shear stress and y” the plastic shear strain rate.
Combining with (9), the attenuation of the elastic precursor is given by

Y 4 Dt Y
0‘—(0’0—5>€X})[—§,U.E:|+5 (11)
where
M
b= A+ 2u

and ay is the initial stress assuming elastic impact. Using this solution,
the predicted attenuation is shown in Fig. 8. The values of o used to fit
the llat plate experimental results are 0.983 X 10° dynes/cm? and
0.472 X 10° dynes/cm? which are of the order of the value reported by
Ferguson et al. [12], namely 10* to 10° dynes/cm?. For the initial stress
of 2.60kh a plastic strain rate of the order of 10" sec™ is expected, i.e.,
in the range reported by Ferguson. Therefore, since the values of « are
approximately the same, it can be assumed that a similar mechanism
for plastic flow is occurring in both the uniaxial stress and uniaxial
strain conditions.[However, a single valuc of o will not fit the two data
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PRECURSOR DECAY IN ALUMINUM 1060-0
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Fig. 8. Attenuation of the elastic precursor for the dislocation viscous damping model.

points reported. Note that the uniaxial stress-strain rate representation
for the relation given by (10) is shown in Fig. 6 for o= 0.983 X 10°
dynes/cm?.

Better agreement can be obtained with the flat plate experiments
for a model that predicts an even higher rate of sensitivity at lower
strain rates. To incorporate this higher sensitivity, a possible stress-
strain rate relation is given by

. 1 1
'Y“:E(T—T())+E(T“To)2 (12)

where 7, 1s the static flow stress in shear.
eads to the solution of the elastic
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Fig. 9. Attenuation of the elastic precursor for the quadratic representation of the
strain rate effects.

4 1 Qaa + b — Vi* — dac|]” .
gm—m[ln Qa0 + b+ VB: — dac L(, 1)
for
b* —4ac > 0
where
LD, 2 D
B B«
“ 700 27

D= ,
A+ 2u ¢ B o

FiguresY9-depictssthesbestsfitbobtained for the flat plate impact data
reported by Karnes [2] for = 0.957 X 10° dynes/cm?* and 8= 0.171 X
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Fig. 10. Wave profile for flat impact testing using the quadratic representation of
the strain rate effects.

10" (dynes/cm?)?. (Figure 6 shows the stress-strain rate relation for
these constants.) It is an improved agreement over the result obtained
with the dislocation damping model. Moreover, the calculated wave
profile shown in Fig. 10 gives qualitative agreement with the experi-
mentally observed behavior. The ringing behind the elastic precursor
is physically unrealistic and could be eliminated by increasing the arti-
ficial viscosity at the expense of losing the detailed description of the
real profile. At later times the ringing disappears and we are left with
a profile that momentarily supports a delayed yield which is in contrast
to the behavior at lower strain rates (Fig. 3), but which is observed in
the flat plate experiments at 1.9 usec and 3.8 usec after impact [2].

A further strain-rate sensitive constitutive relation due to Gilman
[15] has been successfully used to analyze the decay of the elastic pre-
cursor in iron by Taylor [16]. This formulation stems from dislocation
dynamics in which the dislocation velocity is given by

v =1, exp (—T;) (14)

where 7, is a constant and v., is the shear wave velocity. Taking the
mobile dislocation density to be constant at 10° cm™2, the predicted
elastic precursor decay is shown in Fig. 11 for 7,=0.80 X 10° dynes/cm?
and 7, = 0.65 X 10° dynes/cm?® Also, the predicted wave profile de-
rived with the Gilman model. is.shown in Fig. 12. Initially the model
supports a delayed yield but after a short time it appears that it would
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PRECURSOR DECAY IN ALUMINUM 1060-0
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Fig. 11. Attenuation of the elastic precursor for the Gilman model.

no longer be present, and would therefore be in contradiction to exper-
imental observation. Note that Fig. 6 shows the Gilman stress-strain
rate relation for 7, = 0.80 X 10" dynes/cm?.

In summary, of the constitutive equations considered, the best agree-
ment with the experimental data for 1060-0 aluminum is obtained with
(12). Also, it is evident that we have only skimmed the surface in the
study of dynamic plastic deformation. Further work is planned, both
experimental and theoretical, to improve the understanding of the
plastic deformation process at high strain rates. Theoretical efforts will
be directed to obtain wave profiles at later times that can be compared
directly with experimental results, while further experiments will be
carried out at higher strain rates and for different thickness targets.
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Gilman Model

Aluminum 1060-0

Fig. 12. Wave profile for flat plate impact using the Gilman model.

CONCLUSIONS

1. For strain rates from 0.03 sec™ to 40 sec™! the behavior of aluminum
alloy 1060-0 is reasonably represented by the Seeger model. At
higher strain rates, the material shows increasing strain-rate sensi-
tivity.

2. The best representation of the flat plate impact results for an im-

pact stress of 2.6 kb in the uniaxial strain configuration are ob-
tained by assuming the plastic strain rate is given by

o 1 A
Y= )+ 3 (r— )%
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THE PLATE IMPACT CONFIGURATION
FOR DETERMINING MECHANICAL
PROPERTIES OF MATERIALS AT HIGH
STRAIN RATES *

CHARLES H. KARNES

Sandia Corporation
Albuguerque, New Mexico

ABSTRACT

A review of the latest free surface motion and stress measuring instrumentation is
presented along with a description of the plate impact one-dimensional strain config-
uration for determining mechanical properties under stress wave propagation condi-
tions. A discussion is included of results of some other investigators who have used this
configuration to determine dynamic yield stress and the degree of strain rate sensitivity.

INTRODUCTION

Most of the effort being expended to determine the dynamic me-
chanical properties of materials is concentrated in the area of impact
and subsequent plastic wave propagation in long rods and wires or in
configurations such as the split Hopkinson pressure bar. These con-
figurations can be made to approximate the condition of one-dimen-
sional stress when the times of observations are tens or hundreds of
microseconds, or even milliseconds. Many investigators have not con-
sidered the use of the one-dimensional strain conditions of plate im-
pact experiments to investigate the dynamic mechanical properties of
materials. That type of experiment has been used primarily by solid
state physicists to study electrical properties or to determine high pres-
sure thermodynamic equations of state. The plate impact experiment
is a very powerful method of studying the mechanical properties of
solids under wave propagation conditions.

The advantages of this experiment for determining mechanical
properties_are: 1) measurements are unaffected by geometry; 2) an

* This work was supported by the Atomic Energy Commission.
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exact, well-defined and non-changing state of strain is achieved; 3) very
short time observations are made; 4) extremely high strain rates are
achieved; and 5) a large amount of information is obtained from each
experiment.

The disadvantages of this experiment are: 1) very high precision
measurements are required; 2) one must make measurements of in-
direct quantities; 3) observation times are limited; 4) large samples are
usually required; and 5) the cost per experiment is high.

The purposes of this paper are: 1) to describe the details of the ex-
perimental and analytical techniques that are involved in determining
dynamic mechanical properties from plate impact experiments and
2) to present some of the results of previous investigators who have
usced the technique to study dynamic vielding and strain rate eftects in
metals. It is not intended to be a complete review article.

STATE OF STRESS AND STRAIN

In using the plate impact experiment, it is more convenient and
more accurate to make use of the symmetric impact conditions that
exist when the projectile and target plates are of the same material.
For this situation, the impact conditions are well defined since the
particle velocity at the impact surface is precisely one-half the projectile
velocity.

Figure 1 is a cross-section of a projectile and target plate a short time
after impact. The laboratory coordinate system is defined such that the
stress wave resulting from impact propagates in the +x direction, and
the y and z directions are perpendicular to it and oriented arbitrarily.
The dimensions of the plate are chosen so that the rarefaction waves
from the lateral edges do not arrive at the interior of the target plate
until after the measurements are complete.

Figure 1 shows qualitativelyv that the motion of a particle on a macro-
scopic scale is in the x-direction until the rarefaction waves have had
time to propagate from the edges to the particle in question and pro-
duce a component of velocity in the y or z directions. Before that oc-
curs, the strain components in the y and z directions are exactly zero
in a homogeneous material, and the x component of strain is equal to
the volumetric strain, i.e.,

Lh—1 Vo=V Po

e :_7—:1—- (1
e ly Iy P )

where [, I/, and p represent length, specific volume, and density of an
elementyrespectivelviandithezerorsubscripts represent initial values.
Although the state of strain is'very simple, the stress state is three di-
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Fig. 1. Schematic showing location of compression and rarefaction waves after impact.

mensional. The lateral stress components are equal for a material ex-
hibiting transverse isotropy. In order to describe the stress state in
more detail, it is convenient to consider the stress-strain behavior as
determined by a conventional one-dimensional stress compressive test.
In the one-dimensional stress state, the stress and strain are denoted by
Y and «, respectively. If Y is a known function of the plastic work W,,
the question is, How does the material yield and what is the resulting
stress-strain path in one-dimensional strain? In 1952, Wood [1] showed
for one-dimensional strain that the stress in the direction of propaga-
tion, when broken into spherical and deviatoric components, is of the

form
e = Kezp + 3Y(W)) (2)

where Ke,, is the spherical or hydrostatic component * and 3Y(W,) is
the deviatoric component.t The derivation of (2) involves the follow-
ing assumptions: 1) the total strain is the elastic plus the plastic com-

* K is the adiabatic bulk modulus.
TWoodractuallyexpressediYrasiarfunction of plastic strain, but for one-dimensional
strain, that is equivalent to expressing it in terms of plastic work [2].
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Fig. 2. One-dimensional stress to one-dimensional strain transformation.

ponents; 2) the elastic components are given by Hooke’s law; 3) the
plastic strains produce no volume change; and 4) the Von Mises or
Tresca yield criteria apply with isotropic work hardening. Both the
Von Mises and the Tresca yield criteria reduce to

Orp = Oy =FY(W)) (3)
for the one-dimensional strain state.

In order to complete the transformation of the stress-strain path
from the one-dimensional stress state to the one-dimensional strain
state, one must know the relationship between ¢,, and « for “equiv-
alent” conditions. If one assumes that equal plastic work defines equiv-
alent conditions and that the bulk modulus K is independent of mean
pressure, then Fowles [2] has shown that the total strain €, is given by

4)
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The procedure in transforming the stress-strain path is to select an «
and a corresponding Y(W),, calculate the equivalent €,, from (4), and
compute the corresponding o, from (2). Typical stress-strain paths
for the two states with corresponding points are shown in Fig. 2 along
with an element showing the resultant stress and strain states.

EXPERIMENTAL TECHNIQUE

The plate impact experiment for determining the dynamic mechani-
cal properties of materials proceeds as follows. The impact of two flat,
smooth plates made of identical material produces a change in the
particle velocity of the stationary plate which is instantaneous and uni-
form over the impacting surface. The resulting shock front is unstable
if the stress-strain path is concave downward and immediately begins
to spread as the wave propagates into the material. The details of the
wave shape and the wave speeds of particular parts of the wave are
determined by the details of the stress-strain path. As the wave reflects
off the back free surface of the target plate, the details of the wave
shape determine the resulting velocity-time history of the free surface.
If one can measure the free surface velocity-time history with sufhcient
precision relative to impact time, then a complete analysis of the wave
propagation problem, including the interactions which take place as a
result of the waves being reflected off the free surface back into the
plate, results in the average stress-strain path which produced the wave
shape for that particular thickness of material used.

In the experimental configuration shown in Fig. 3, the projectile
plate is bonded to a long projectile body and is propelled into the target
plate at the desired velocity by compressed gas. The impact velocity is
determined by the projectile’s shorting of slender charged pins which
protrude accurately known distances from the surface of the target
plate. The non-simultaneity of the impact and the time of impact are
both determined by four additional charged pins positioned flush with
the impact surface.

The required precision is obtained only when exceptional care is
used in preparing the targets. The target and the projectile nose sur-
faces have a roughness of from 0.02 to 0.1 micron (1 to 4 win.) rms and
are flat to within 0.3 micron (12 wpin.) over the diameter of the im-
pacting surface for impact velocities of the order of 100 fps. The finish
and flatness requirement can be relaxed somewhat for higher veloci-
ties. The minimum tilt or non-simultaneity of impact that can be ob-
tained averages about 107 rad. for 100 fps to 5 X 107 rad. for 2000
fpsuprojectilenvelocitiessFhesprojectile nose plates are supported in
such a way that they are not distorted by being accelerated down the
barrel.
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Fig. 3. Schematic showing orientation of target plate and projectile just betore impact.

The latest developments i mstrumentation to measure accurately
the motion of the free surface as a result of its interaction with the
oncoming wave profile are the standard Michelson displacement inter-
ferometer adapted for this purpose by Barker and Hollenbach [3]
and the velocity interferometer also developed by Barker [4] and Hol-
lenbach. A schematic of the Michelson interferometer is shown in
Fig. 4. The free surface of the target plate 1s one mirror of the inter-
ferometer. Each time the surface moves one-half wave length of the
source light, the photomultiplier observes one complete cycle from
constructive to destructive to constructive interference. The observed
frequency of the fringes is proportional to the {ree surface velocity
and is approximatcly 10°HZ for cach foot per second using a 6328 A
light source. The present limit on free surface velocity amplitude is
about 700 fps due to photomultiplier frequency response.

The velocity interferometer (Fig. 5) overcomes the limitation on
maximum free surface velocity by optically differentiating the tree
surlace motion so that each fringe represents a change in velocity
rather than a change in position. The photomultiplier views the sur-
face by two light paths: path (4) is directly through the beam splitters
and path (B) is around the delay leg. The beam passing directly
through the beam splitters is of a wave length determined by the
velocity of the frée surface (by the Doppler shift) at time ¢. The beam
just returning to the beam splitter from the delay leg is of a wave length
determined by the free surface velocity at time £ — 7, where 7 is the time
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Oscillograph trace

Fig. 6. I'rce surface velocity history and corvesponding oscillograph trace of photo-
multiplicr output (from ref. 4).

required for light to travel around the delay leg. The two beams mix,
and the resulting beat frequency is proportional to the frec surface
acceleration averaged over the delay time 7. The ume integral of the
beat frequency 1s just the number of fringes observed and is propor-
tional to the change in free surface velocity. Barker (4] has shown that

v(t) = (—_))\; N(t) (5)
where v(t) is the free surface velocity at time ¢ (averaged over time 7),
X is the light source wave length, and N(1) is the number of fringes
counted at time (. 'The coeflicient, A/27, which is the change in velocity
corresponding to one complete fringe, can be varied at will. For most
current applications, 7is of the order of 0.010 usec, this gives a value for
A/27 of about 110 {ps which is known to within 0.2 percent. The tme
resolution of both interferometer systems is approximately 0.002 uscc.
Schematic of a free surface velocity-time history and the correspond-
ing photomultiplier output from the velocity interferometer are shown
in Fig. 6.

Another transducer, the “Sandia quartz gage,” which was developed
in the last five years by Graham, Neilson, and Benedick [5], enables one
1o measure stress-time history directly with a time resolution of the or-
der of 0.010 usec. As shown in Fig. 7, the Sandia quartz gage is used to
monitor the stress-time history at the interface between the quartz and
a target plate after the stress wave has traversed the target.™ As the
stress wave enters the quartz, the electrical current generated by the
quartz is proportional to the interface stress and is given by the rela-
tionship

#The Sandia quartz gage can also be used to monitor the stress-time history at the im-
pact surface.
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Fig. 7. Schematic of quartz gage as used in monitoring transmitted stress wave.

AKU,
i) == (1) (6)

where 4 is the area of the “active” portion of the gage, K is the piezo-
electric current coeflicient, Uy is the shock velocity in the quartz, [ is the
gage thickness, and o(f) is the quartz-target interface stress. The re-
cording time is limited by the arrival of the initial transmitted stress
wave at the rear surface of the gage. The portion of the quartz which
is generating the current i(¢) is subjected to one-dimensional strain and
electric fields until after the measurements are complete. Figure 8
shows the stress-time history at an invar-quartz interface after the invar
target was symmetrically impacted at a velocity of 616 tps. The maxi-
mum stress in the invar was 30.8 kbar [6].*

ANALYSIS

Since strain cannot be measured directly in a plate impact experi-
ment, one must have a theoretical foundation on which to base an
analysis of the complete wave propagation problem in order to com-
pute the stresses and strains involved. An analysis commonly used by
investigators at Sandia Laboratories follows after Barker, Lundergan,
and Herrmann [7] in that it is assumed that a continuous stress profile
can be represented by a series of stress increments or jumps, each
propagating with a constant velocity appropriate for that stress level.
The assumption of constant propagational velocity implies that the
material is not strain rate dependent. It is also assumed that the
Hugoniot jump equations apply for the interaction of the stress incre-

* One kbar is 14,504 psi.
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Fig. 8. Stress-time history at invar-quartz interface after transmission through 0.3387"
ol invar showing arrival of clastic wave and slower moving plastic wave. Upper timing
wave is 10 me and lower trace is 7.0v (from Graham [6]).

ments with each other and with material interfaces, i.e.,
Ao = p; UyAU, (7)

Pi _ l].x‘i (8)
pi-i Uys— AU,
here Ags is the chanee in stress across the i hich is bropa-
where Aoy is the change in stress across the /™ jumyp which is propa
gating with a velocity Uy this causes a jump in particle velocity of
AU,; and a hnal density of pi. The density ahead of the jump is p;_;.
The assumption of constant U and, hence, strain rate independence,
results in a propagational velocity of

| A(T,'

Uy=—— —_—
o opia Po Ag;

(9
where p, 1s the density corresponding to zero strain, and Ag; is the jump
assumptions imply that the stress-
of straight line segments, with the
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Fig. 9. Measured and computed free surface velocity history for (.945" target impacted
at 105.4 FPS.

number of segments chosen determining the number of jumps used in
representing the stress profile.

The positions and magnitudes of all the interactions which take place
are calculated with a high speed digital computer which essentially
completes an x-t diagram showing the positions of all the shocks as a
function of time. The magnitudes of all the variables behind each
shock, such as stress, strain, particle velocity, and internal energy, are
also computed. Obviously, the computer solution to the complete wave
propagation problem cannot be obtained unless the stress-strain rela-
tion in loading and unloading is known, but it is this relationship which
is being sought. In order to obtain it, the problem is actually solved in
reverse order by a process of iteration [7].

The free surface velocity history is used as a guide to obtain a first try
as to the stress-strain path which the material had to follow in order to
produce that free surface motion. With the first try stress-strain path as
an input to the computer program, the complete solution is obtained
and the computed free surface velocity-time history is compared with
the measured history. Generally, a good fit is not obtained after one
try, so the stress-strain path is adjusted appropriately until the com-
puted and measured free surface velocity history compare within ex-
perimental and numerical error.

The free.surface velocity history shown in Fig. 9 compares measured
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and computed values for a 0.945 inch thick target of annealed 1060
aluminum (99.6% Al) impacted by an identical projectile nose moving
with a velocity ot 105.4 fps. The free surface motion was monitored
with the Michelson interferometer instrumentation and the computed
free surface velocity histories were obtained from two different stress-
strain paths. Stepped curve A is the final computed velocity history ob-
tained after several of the iterations described above. In order to indi-
cate the sensitivity of this technique in obtaining a final stress-strain
path, another slightly different stress-strain path (curve B in Fig. 10)
was used in the program to calculate another free surface velocity his-
tory which is shown by stepped curve B in Fig. 9. The region of the
measured curve in Fig. 9 immediately after the arrival of the elastic
wave cannot be reproduced by the computed curves because the relax-
ation in velocity, as first reported by Barker, Butcher, and Karnes [8],
is not compatible with the assumption of strain rate independcence used
in the analysis.

The same stress-strain path which best reproduces the tree surface
velocity history for a 0.945 inch thick target was used to predict the free
surface motion for 0.482 and 0.229 inch targets and is compared with

=T

- :l”_ /

. 001 ) ) . 002 . 003
Strain

Fig. 10. Stress-strain paths which result in (ree surface velocity histories of Fig. 9.
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measured behavior for those thicknesses in Figs. 11 and 12, respec-
tively. If this material were strain rate independent as assumed, i.e., it
the propagational velocity associated with each particle velocity level
were constant with distance of propagation, excellent agreement
should have been obtained for the other thicknesses. Such is not the
case.

The target thickness divided by the arrival time of a particular
velocity level on the free surface velocity-time curve is the average
propagational velocity, Uy, through the thickness of the target. The
resulting stress-strain path which best reproduces the free surface mo-
tion is then an average stress-strain path for that particular target
thickness and strain rate history. For propagation through the thin
targets, the average strain rates are higher, and, if the material proper-
ties are rate or ume dependent, the corresponding stress-strain paths
should lie above those for the thick targets, as indicated in Fig. 13
where the stress-strain paths for the 0.229, 0.482, and 0.945 inch thick
targets are shown. All curves bend toward the hydrostat at the peak
stresses since the strain rates at the peak stresses are very low for all
target thicknesses and at that time the material is approaching a state of

2.6 -
0.945" Target, 105.4 FPS

2.4
0.229" Target, 103.4 FPS

.2

2.0 - 0.482" Target, 80.0 FPS

Stress - kbar

1 1

1
0 . 001 002 .003
Strain

in path with target thickness and impact



284 Charles H. Karnes

Fig. 14. Qualitative compression and unloading path in one-dimensional strain.

equilibrium. The curve for the 0.945 inch target crosses the other two
curves because it is for a higher impact velocity and is associated with a
higher average strain rate at stress levels where the thinner, lower
velocity targets are approaching states of equilibrium.

A stress-strain path that best reproduces the experimentally deter-
mined free surface motion is not determined without uncertainties. If
a material is loaded due to impact along a stress-strain path (such as in
Fig. 14) to the maximum stress at point A, the stress and strain histories
at a point within the interior of the material are dependent only on the
details of the stress-strain path followed in reaching point 4 (assuming
the path is unique). However, once the compressive wave reflects off
a free surface, the material behind the reflected wave must unload to a
zero stress condition. The details of the free surface motion, therefore,
depend on the knowledge or assumption concerning the unloading
path as the material unloads elastically and then undergoes reverse
yielding along path B to point C in Fig. 14. The details of the unloading
path are determined by the deviatoric stress in reverse yielding, the
location of the hydrostat, dnd the yield criterion. Although the free sur-
face motion cannot be calculated exactly without precise knowledge of
the details of the unloading path, fortunately the calculated free sur-
face motion depends only very weakly on the unloading path used [7].
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VERIFICATION OF REFLECTION CALCULATIONS

In order to eliminate the uncertainty due to the unknown details of
the unloading path an experiment was performed using the same con-
ditions as before except that a quartz gage was placed on the back sur-
tace of the 1060 Al target. The mechanical impedances in one-dimen-
sional strain of aluminum and quartz arc so nearly the same whether or
not the aluminum has yiclded that any unloading which takes place as
a result of the interface reflections is completely elastic. Therefore, the
uncertainties associated with the unloading path are eliminated, and
the only approximations remaining in the analysis are: 1) the represen-
tation of the continuous stress distribution with a series of steps, and 2)
the assumption that cach step propagates with a constant velocity
characteristic ol the stress increment it represents. 'The steps approach
the continuous curve if a large number of small ones are used, and the
second assumption results in an average stress-strain path based on the
average propagation velocities of the steps.

The smooth line in Fig. 15 shows the stress history at the aluminum-
quartz interface as determined by the quartz gage. A computer analy-
sis was made {or this configuration: the analvsis considered the inter-

Fig. 15. Experimental and computed stress history at interface between 0.945 in. thick

aluminum target and quartz gage.
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Fig. 16. Stress-strain paths obtained from quartz and free surface data.

actions as a result of the aluminum-quartz interface. The stepped
curve in Fig. 15 is the computed stress history at the aluminum-quartz
interface based on stress-strain path B in Fig. 16. The stress-strain path
obtained from the free surface measurements with the interferometer
(curve 4 in Fig. 10) is shown for comparison. The excellent agreement
at the lower stress levels, even though the degree of unloading was
drastically different, attests to the negligible effect the details of the
unloading path have on the loading portion of the stress-strain curve.
The curves diverge slightly near the maximum stress because of the
slightly different impact velocities. Note that the difference in final
stress levels is the same percentage as the difference in velocities.

RESULTS OF OTHER INVESTIGATORS

There are some investigators who have made use of the one-dimen-
sional strain conditions of plate impact experiments to investigate dy-
namic mechanical properties. The first reported use of the Sandia
quartz gage technique was by Jones, Neilson, and Benedick [9] in 1962.
They investigated the dynamic yielding phenomena of duraluminum,
iron, and steel of various compositions and heat treatments when
shocked with high explosive plane wave generators. Some of their re-
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Fig. 17. Transmitted wave shapes through iron and iron alloys obtained with quartz
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sults are shown in Fig. 17 from which the dynamic yield stress in one-
dimensional strain (Hugoniot elastic limit) can be obtained for all the
materials except Hampden tool steel whose yield stress is higher than
the lincar range of the quartz.

In 1963, Taylor and Rice [10] reported the usc of a parallel plate
capacitor free surface motion transducer to correlate the variation in
amplitude of the elastic wave in Armco iron with the equation of state
of a linearly relaxing solid. These same data were further analyzed and
reported in 1965 by Taylor [11]. The Hugoniot elastic limit of Armco
iron attenuates in amplitude with distance ol propagation. "Taylor
showed that both the amplitude and its decay with distance of propaga-
ton (shown in Fig. 18) can be explained in terms of the dislocation
theory of Gilman and Johnston [12]. He used the relation

v = bNv (10)

to describe the plastic shear strain rate y in terms of the Burgers vec-
tor b, the dislocation density N, and the average dislocation velocity .
The dislocation veloaty was expressed in terms of the resolved shear
stress by

To
0=, exp (f —) (1)
T

where v, and 7, arc constants and 7 is the resolved shear stress. The

dislocation density was expressed as

(12)
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Fig. 18. Initial free surface velocity as result of elastic wave as function of distance
of propagation. Points are from experiments. Lines are predictions from dislocation
model (from ref. 11).

where N, is the initial dislocation density, and B is the multiplication
rate. The term ¢y/7 represents a work hardening function. By adjust-
ing some of the constants, Taylor was able to fit the data as shown in
Fig. 18.

In 1964, Barker, Lundergan, and Herrmann [7] published the first
evidence of strain rate effects in aluminum in the one-dimensional
strain configuration. They made use of the slant resistor free surface
motion instrumentation system developed by Barker and Hollenbach
[18]. The resultant stress-strain curves for 6061-T6 aluminum obtained
from the same analysis technique previously described in this paper are
presented in Fig. 19 along with the curve predicted from quasi-static
data for the same material. The individual dynamic curves bend to-
ward the static curve near the ends. This results in stress-strain curves
which lie above the quasi-static curve and depend on the impact ve-
locity or maximum stress obtained in the experiment. Although the in-
crease in stress above the static curve is only about five percent of the
total stress, the increase in the deviatoric component is about thirty
percent.
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Fig. 19. Swress-strain paths for 6061-T6 aluminum obtained with slant resistor in-
strumentation (from refl. 7).

In 1966, Butcher and Karnes [14] showed that the strain rate be-
havior of 6061-T6 can be explained by a Malvern [15] type analysis
using a consututive relation for one-dimensional stress of the form

Y = Yo+ Ala — o) + B'(1 — e (13)
where
B'=Bloga"+D for a"<3$§
= Bllog (8) — 1]+ D + (B/8)a” for o’ > 8

where & defines the boundary separating the logarithmic from the lin-
ear dependence on plastic strain rate and B and D are constants which
determine the degree of strain rate dependence. It was found experi-
mentally that the stress-strain path (based on the same analysis pre-
viously discussed) is not unique, is dependent on the distance of propa-
gation (and hence, time), and is predicted accurately by (13) when
transformed to one-dimensional strain. The computed average stress-
strain paths for propagation through 0.5 and 2.5 in. targets along with
the experimental data points and the curve predicted {rom static be-

lefinitely exists in 6061-T6 alumi-
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aluminum (from ref. 14).

num under uniaxial strain conditions, it is not as pronounced as in the
annealed 1060 aluminum.

Holt, Babcock, Green, and Maiden [16] have observed that increased
hardness, whether produced by alloying content or by heat treatment,
reduces the strain rate sensitivity of aluminum. Their results are shown
in Fig. 21 where the relative increase in flow stress due to a six order of
magnitude increase in strain rate is plotted against the flow stress corre-
sponding to the lowest strain rate. Their results were obtained on sys-
tems which rapidly deform short cylindrical specimens, with the meas-
everberations of the stress waves
pecimens. Figure 21 also includes
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data points obtained by Lindholm and Yeakley [17] and by Karnes and
Ripperger [18].

Butcher and Canon [19] have observed the same phenomena in plate
impact experiments on 4340 steel. Their results are shown in Fig. 22
where the resulting stress-strain paths for hard and soft 4340 are in-
cluded along with the corresponding curves based on quasi-static be-
havior. Jones, et al. [9] observed the same phenomena of rate sensitiv-
ity being reduced by hardness.

SUMMARY

It has been shown that the interactions which take place just inside
the free surface of a target plate can be calculated with confidence
using a series of steps to represent the continuous stress profile and the
Hugoniot jump conditions to describe the interaction of the steps. Such
a technique enables one to construct an average stress-strain path
which reproduces experimental data.

Plate impact experiments on 1060 and 6061-T6 aluminum agree
with the findings of Holt, Babcock, Green, and Maiden [16], using en-
tirely different experimental techniques, that the mechanical proper-
ties of aluminum are rate dependent and that the extent of the effect
is increased by either purifying or annealing, or both.

The plate impact experiments enable one to study mechanical prop-
erties of materials in a well-defined state of strain that is not affected
by geometry or boundaries even though the stress state is different
from the one usually considered. One can make meaningful measure-
ments during strain rates which are several orders of magnitude higher
than in rod or cylinder impact studies.

ACKNOWLEDGMENTS

The author wishes to thank L. M. Barker for his constructive com-
ments during the preparation of the manuscript and also for allowing
the inclusion of the velocity interferometer information prior to his
presentation in Paris. He is also indebted to R. A. Graham for many
discussions concerning the use of the quartz gage and also for inclusion
of the unpublished invar-quartz record. Without the assistance of Mrs.
Emily Young, the dozens of computer runs could not have been made
in the time allowed. C. D. Lundergan contributed many helpful com-
ments concerning the manuscript and the author is indebted to B. M.
Butcher for his comments and the use of the partially unpublished
interferometer data on the 0.482 in. 1060 aluminum target. The au-
thor is especially indebted to R. E. Hollenbach, T. C. Looby, and R. G.



The Plate Impact Configuration 293

Newman for making most of the experiments reported in this paper
possible.

ca

Thanks is also given to the American Institute of Physics, the Ameri-
n Institute of Aeronautics and Astronautics and the American So-

ciety of Metals for granting permission to republish some of the figures.

10.
I1.
12.

13.
14.
15.
16.

17.

18

19.

References

. D.S. Wood, J. Appl. Mech., 19, 521 (1952).

. G. R. Fowles, J. Appl. Phys.. 32, 1475 (1961).

. L. M. Barker and R. E. Hollenbach, Rev. Sci. Inst.. 36, 1617 (1965).

L. M. Barker (To be presented at IUTAM Symposium H.D.P.), Paris,

Sept. 1967.

R. A. Graham, F. W. Neilson and N. B. Benedick. J. Appl. Phys., 306,

1775 (1965).

R. A. Graham, Private Communication.

[.. M. Barker. C. D. Lundergan and W. Herrmann, J. Appl. Phvs.. 35,

1203 (1964).

. L. M. Barker, B. M. Butcher and C. H. Karnes, J. Appl. Phys., 37, 1989
(1966).

. O. E. Jones, F. W. Neilson and N. B. Benedick, J. Appl. Phvs., 33, 3224

(1962).

J. W. Tavlor and M. H. Rice, J. Appl. Phvs., 34, 364 (1963).

J. W. Taylor, J. Appl. Phys., 36, No. 10 (1963).

J. J. Gilman and W. G. Johuston. Dislocation and Mechanical Properties of

Crystals, John Wiley and Sons, Inc., New York (1957).

L. M. Barker and R. E. Hollenbach, Rev. Sci. Inst.. 35, 742 (1964).

B. M. Butcher and C. H. Karnes, J. Appl. Phys., 37, 402 (1966).

L. E. Malvern, Quart. Appl. Math., 7-8, 405 (1949-51).

D. L. Holt, S. G. Babcock, S. J. Green and C. J. Maiden, Trans. ASM,

60 (1967).

U. S. Lindholm and L. M. Yeakley, J. Mech. Phys. Solids, 73, 41 (1965).

. C. H. Karnes and E. A. Ripperger, ]J. Mech. Phys. Solids, 14, 75 (1966).

B. M. Butcher and J. R. Canon, AIAA Journal, 2, 2174 (1964).



THE RELATIONSHIP BETWEEN

THE CONSTITUTIVE EQUATION

AND ONE-DIMENSIONAL WAVE
PROPAGATION

E. A. RIPPERGER

The University of Texas
Austin, Texas

and

HaL WaTson, Jr.

Southern Methodist University
Dallas, Texas

ABSTRACT

A uniform normal stress is suddenly applied at the end of a semi-infinite rod. The
stress then remains constant. The bar is made of a hypothetical material with a yield
stress significantly lower than the applied stress. Various constitutive relationships are
assigned to the bar material. Wave front profiles, in terms of the axial strain, are com-
puted for each constitutive relationship, and for different values of the constants that
appear in the constitutive equations. Profiles obtained in this way are compared to deter-
mine the sensitivity of the characteristic features of the profiles to the form of the
constitutive equation. Special computation techniques for minimizing error are de-
scribed. Results of the computations are discussed in terms of their relevance to the
interpretation of experimental measurements.

INTRODUCTION

Measurements from which the constitutive relationships applicable
at high rates of strain are deduced, inevitably involve plastic wave
propagation [1, 2]. The measurements are usually made in either a
one-dimensional stress or a one-dimensional strain situation. In this
paper, attention will be focused on the one-dimensional stress problem.

The most general first-order quasi-linear form of the constitutive
equation is [3, 4]

294
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€= [(o. €)d + g(o. €). (1)

The functions / and g depend upon temperature, but temperature
is assumed to be constant here. Two special forms of this equation have
been used in analytical studies and have been investigated experi-
mentally. In one case, the function g(o. €) is assumed to be negligible
[5]. This is the rate independent relationship expressed simply as

= a(e). (2)

In the second case. the function f(o. €) is assumed to be a constant,
1/E. and the function ¢(o. €) is taken in various forms [6]. Thus

é:%édrg((r‘ €). (3)

In some of the experimental investigations intended to reveal the re-
lationship which best describes the behavior of materials, various
features of the profile of a plastic wave front propagating in a rod have
been studied [7, 8]. These investigations have. in general. not clearlv
resolved the issue of which form ot the consututive relationship is
most nearly correct. Direct measurements of stress and strain have
indicated that the function g(o. €) is not negligible [9, 10]. This con-
tradiction suggests that measurements of the wave profile characteris-
tics are not particularly sensitive as indicators of the form of the
constitutive relationship. With this thought in mind, the authors have
made a computer investigation of one-dimensional plastic stress wave
propagation assuming different forms of the constitutive equation and
different values of the constants involved. The results of these compu-
tations are presented and discussed in terms of their relevance to the
interpretation of experimental measurements.

In these discussions, no attempt is made to compare experimental
measurements and computed results although ample experimental
measurements are available. The emphasis here is on the similarities
and differences in strains which result when different constitutive equa-
tions are assumed. The experimentation is done with the computer.

For g(o. €) the following torms have been investigated

_ l g — 6_ H/
glo. €)= . (——6_ ) (4)
glo. €)= K(og — 0) (5)
g(O‘. €)= Ko —a,). (6)

In each case, it is assumed that ¢ > &, and o > o,
Equationy(4)isstheformyproposed, by Chalupnik [10]. It differs from
one of the special forms discussed by Perzyna [11] only in the substitu-
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Fig. 1. Static stress-strain curve.

tion of & for o,. The latter. o, is the yield stress in simple tension and
o is the stress given by the static stress-strain relationship for the strain
that exists when the stress is o.

Thus, the quantity o — & is the dynamic overstress used by Malvern
[6]. Equation (4) is also the form used by Bodner and Symonds [12]
with & replaced by o, in a strain-rate dependent rigid-plastic analysis
of the impact loading of beams. Equation (5) will be recognized as the
linearized version of the exponential form of the “g” function sug-
gested by Malvern. Equation (6) is the form used by Sokolovskii [13].

The meaning of constitutive relationships such as these is made
somewhat clearer perhaps by examining a few of the stress-strain
curves plotted from these “g” functions and comparing them to the
static stress-strain curve in Fig. 1. The function €"= g(a, €) represents a
surface. To examine some of the features of that surface, we will take
a cross section in which stress appears as a function of strain with strain
rate €” as a parameter. Some of these cross sections are shown in Fig. 2
for a function of the form given in (4). In this plot, five different combi-
nations of the two parameters 7 and m are represented. These curves

were prepared by first calculating the value of z ; A corresponding to

a given set of parameters and a strain rate of 250 sec™!. Then for se-
lected values of & the corresponding values of o are readily computed
from the relationship

o=l + (re)m].

Erom curves 2;.3.and 4, it.may.be,seen that for a fixed value of m the
strain rate effect increases with increasing 7. The extent to which the
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Fig. 2. Stress-strain curves at € = 250 sec¢™' for a two-parameter G functon.

dynamic stress-strain curve differs from the static curve indicates the
extent of the strain rate effect. Curves 1 and 4 also show that if 7 is
constant and m is increased, the strain rate effect increases. The same
family of curves is shown in Fig. 3 for a strain rate of 1500 sec™". Al-
though the relative positions of the curves are unchanged, it is obvious
that the effects are somewhat greater than those produced by a strain
rate of 250 sec™'.

Stress-strain curves for the hnearized flow law of (5) are shown in
Fig. 4 for three different values of the constant K and two different
strain rates. These curves show that as K increases, the rate effect de-
creases, or in other words, the smaller K is, the greater the dynamic
overstress becomes at a given strain rate.

For the constants 7 and m which appear in (4), the values selected for
study are

m T

5.81 0.143 X 1079 sec
8 X 107 sec
0 X 107% sec
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Fig. 3. Stress-strain curves at € = 1500 sec™ for a two-parameter G function.

These values were suggested to some extent by earlier experimental
results [10, 14, 15], but, in general, the choice was based primarily on
a need for a moderately wide range of realistic values rather than on a
need to simulate some particular material.

The values for the constant K in (5) were chosen as follows:

K=1.125 X 10% and 4.50 X 10% sec™".

These values also were selected, not to match the particular data
available, but to give a realistic range of values suitable for the type of
comparisons to be made.

Equation (6) indicates that plastic flow will tend to bring the stress
back to the yield stress level whereas, in the relationship given by (5),
the stress decays toward the static-stress-strain curve. For an elastic-
plastic material, the behavior predicted by the two equations would be
the same.

Since a static stress-strain curve is required for (2), (4), and (5), a
hypothetical curve was constructed. This curve shown in Fig. 1 resem-
bles a copper stress-strain curve, but it must be emphasized again that
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Fig. 4. Stress-strain curves at € = 250 sec™!, 1500 sec™ for a one-parameter G {unction.

the curve was not constructed from any experimental results. The pro-
portional limit stress was arbitrarily set at 22,5600 psi and the corre-
sponding strain at 0.15 percent. This makes the modulus of elasticity
for this hypothetical material 15 X 109 psi. For computational purposes,
this stress-strain relationship has been expressed in the form of a poly-
nomial.

o=[le)= 156X 10% €= 0.15% o)

o= fle)= 15 X 10=139.260€* + 1.40667¢

—0.000296] €>0.15%.

(8)

The problem considered is stated as follows: A semi-infinite cylin-
drical rod with a small diameter, made of a homogeneous material
having the stress-strain characteristics indicated by (7) and (8) and
shown in Fig. 1, is subjected to a step application of a uniform stress of
47,400 psi at the end of the rod.

The stresses and strains in this rod are computed as functions of time
d. Thus, the stress and strain dis-

t a given time can be compared, or
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the stress or strain variation with time at a given point on the bar can be
compared. The method of characteristics was used for the computa-
tions when the constitutive relationship expressed by (1) was used. A
simple finite difference routine was used when the constitutive relation-
ship was given by (2).

COMPUTATIONAL PROCEDURE

For the propagation of plane waves in a uniform, homogeneous bar
as assumed here, the equations of motion and continuity in the La-
grangian form are

do _ du
ax—pat )
dv _ de.
ax ot (10)

The symbols are defined as follows:

o —engineering stress

€—engineering strain

v— particle velocity

p—mass density

x—initial distance of a section of the bar from the origin
t—time

With these equations, one must have a constitutive relationship such
as those given by (1) and (2).

Rate Independent Computations

For the rate independent material and a constant stress input, com-
putation of the strain distribution in the bar at a given time is relatively
simple. The slopes of the stress-strain curve are obtained by differen-
tiating the polynomial given in (8). Then, if a density is assumed for
the material, or, as was actually done, the velocity of elastic wave propa-
gation is assumed, the velocity of propagation of any strain amplitude
can be easily computed. With the velocities of the different strain ampli-
tudes known, the position of each amplitude at a given time can be
computed and the profile of the wave front established. This has been
done and the results are shown in Fig. 5. These curves display all of
the well known characteristics of a plastic wave: the initial step up to
the yield strain, the sloping front from the yield strain to the input
strain with the slope of this part decreasing with time, and the



One-Dimensional Wave Propagation 301

Step in stress af impoct end

-------- Susec rise time in stress ot impact end with ot
initiol jump to yield stress N 47,400
22,500

¥ ".-bput [: 1

" Susec rise time in stress at impact end with

04t
N";
t sec
c
e 03f . 3 BOpsec
a - '

ozt

Distance from impoct end
(inches)

Fig. 5. Wave front profiles—strain-rate independent theory.

strain platcau which increases in length as time goes on. The dotted
and dashed curves represent the wave front profiles for the input
stresses shown in the inset in Fig. 5. These strain rate independent
profiles will be compared later to corresponding profiles for rate de-
pendent materials.

Rate Dependent Computations

When constitutive relationships of the type indicated by (1) are used
to characterize the material, the basic equations are quasi-linear and
hyperbolic. For equations of this type, the method of characteristics
can be used to trace the propagation of plastic waves. This method, as
it applies to plastic wave propagation, has been described in detail in
numerous publications [7]. Consequently, only the form of the equa-
tions actually used in the computations will be given here. The ordinary
differential equations in dimensionless form for propagation along the
characteristic curves are

do — dv=—g(o, €) dt along dx = dt
do + dv=—glo, €) dt along dx = —dt (11)
along dx= 0.

L 2 ] & ‘ i ons given by (4), (5) or (6), chang-
) _)Lf:-.d)u ub
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ing (11) to a finite difference form, and introducing the static stress-
strain relationship of Fig. 1 in the form of (8), the computations can
be started. One of the three unknowns (o, €, v) must be specified at the
end of the bar. In this case, o is specified to be 47,400 psi as previously
indicated. The values of all three unknowns are computed along the
wave front using the characteristic equation along dx = dt, the continu-
ity relationship de = —dv, and the elasticity relationship do = de. With
this information as a starting point, an iterative scheme is used to “walk
out into the interior mesh points.” In this procedure, approximations
of the form
do = Ao =04 — 0;

are used. For approximations of this form, the truncation error is
of the same order of magnitude as the mesh size multiplied by the
second derivative. Furthermore, in initial value or “marching” prob-
lems of this sort, any errors (round off, truncation, or both) at any
point are propagated along with the solution. Thus, the farther the
solution goes, the greater the error becomes. It is extremely im-
portant, therefore, that errors be minimized near the beginning. Con-
sequently, the computations reported here were started with a very
small mesh size at the beginning of the propagation where the variables
change very rapidly and second derivatives are large. Then, as the
computations proceed, a shift is made to a coarser net to keep the com-
putational time within acceptable bounds, to reduce storage require-
ments, and to reduce the total number of computations, thereby reduc-
ing the cumulative round-off error.

Mesh Changing Scheme and Stability and Accuracy Considerations

The computational scheme may be studied by first considering the
x —t plane (characteristic plane) as seen in Fig. 6. The order of the
computation of the solution of ¢, € and v is indicated by a numbered
sequence of points in this plane. In this sequence, computations begin
with a small size mesh (mesh 1) and continue into the interior of the
region of the x-t plane bounded by x =t and x = 0. As the computa-
tions continue into this region, the mesh size is doubled from time to
time (mesh 2, mesh 3) whenever the solution allows such a change, i.e.,
whenever second derivatives are small enough and convergence can
be attained with the new enlarged mesh size. Note, however, that it is
only possible to form some multiple of the last mesh size, i.e., mesh 2 is
double the size of mesh 1. The reasons for this are, 1) previously com-
puted values must be used to find new values, therefore, characteristic
lines must pass through points at which the solution has been pre-
viously computed and 2) constancy of directions of the characteristic
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Shock Front

Fig. 6. x-t plane showing variable mesh size.

lines, i.e., Ax = At. Note also that the total number of mesh spaces in
the last sequence (14-18) of mesh points just prior to changing mesh
size must be an even number so that when the mesh size is doubled, the
coarser mesh will be compatible with the finer mesh and fit into the
pattern.

At points where a coarser mesh is compatible, the solution at point P
(Fig. 7), the first interior point for the coarser mesh, is attempted after
multiplying the value of the “g” function used in each characteristic
difference equation by a factor of 10. This is equivalent to increasing
the actual size of the truncation error, or the second derivatives, by an
order of magnitude. If convergence can be reached for this extreme
case, the mesh change is initiated and computations begin with the new,
coarser mesh size. If at any later point in the computational sequence,
convergence cannot be attained within a reasonable number of itera-
tions, the computational procedure using that particular mesh size is
aborted and computations begin anew with the previous mesh size
from the point where the mesh size change was previously initiated.
Whenever the.mesh size issinereased to the maximum desired size, no
more changes in the mesh size are made and computations continue
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out to some desired value of time. On the average, 10-15 changes in
mesh size are made during a single computation run.

A check on the truncation error was made for a single case by reduc-
ing the size of the final mesh by a factor of 2 and comparing the solu-
tion after many computations. The difference in the two solutions was
in the fifth and sixth significant digits.

In order to minimize round-off error, the total number of computa-
tions was minimized by using the mesh changing scheme mentioned
above. Also, the solution was carried along in 14 decimal digits. Con-
vergence of the iterative scheme is assumed at each point whenever
two successive trial solutions differ only in the twelfth digit. For con-
vergence of this accuracy, about thirty iterations are needed at each
point of the x, t plane to solve for the values of o, € and v. The final
mesh size used in these computations is Ax = At = 0.01 (dimensionless)
or Ax = 0.05 in., At = 0.345 usec. Most of the computations were car-
ried out to ¢t = 100 usec and x = 14.5 in.

No problems in stability were encountered in the computations re-
ported here. Whenever convergence at a point was not obtained for
one size of mesh, it was attained using a previous, finer mesh size.
Howeversit.was found in previous, calculations for aluminum, with a
step in velocity as the boundary condition, that the type of iterative
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scheme used determined whether or not convergence could be attained
for ¢ very near 100 usec. The Gauss-Seidel method of iterating to a
solution required a finer mesh size and required more iterations to con-
verge than did the predictor-corrector method used here.

NUMERICAL RESULTS

The computed profiles of the wave front as it progresses along a bar
with a “¢” function of the form given by (4) are shown in Figs. 8
through 12. In Figs. 8, 9 and 10, the value of m is constant and 7 is in-
creasing. These curves have the well-known general features of a
plastic wave front. There are, however, four features of these curves
which should be especially noted. These are: 1) Although the strain at
the impact end continues to increase after the impact, after 80 usec, it
has not reached the value shown in Fig. 5 for the strain rate inde-
pendent propagation. 2) After 80 usec, the strain is essentially con-
stant from the impact end to about five inches from the end. For ex-
ample, at five inches from the impact end, the strain is only 2.5 per-
cent less than it is at the impact end for 7 = 0.143 X 107% sec and
for 7 = 8.0 X 107% sec the strain at five inches is only 5.3 percent
less than at the impact end. Attention is called to this point be-
cause one of the distinguishing differences frequently pointed out
between propagation in strain rate sensitive and non-strain-rate sen-
sitive materials has been the strain plateau which forms in the non-
strain-rate materials [7]. It has been shown, it should also be noted, that

0.6

g 14 (ZE)M | £=0.143XI0*sec
L m=37

0.5

80pusec

Strain (%)

0 1.0 20 30 4.0 5.0 6.0 70 80 9.0 10
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Fig. 8. Wave front profile, 7 = 0.143 X 107% sec, m = 3.7.



306 E. A. Ripperger and Hal Watson, Jr.

06
T
05 u-lu—if"- r= 2.08XI0%ec
, | - me 37
04 '

//A

| __-—-_-_-—-_'_'_""'—-—
E 03 ~C b \ M — |
£ “*-ﬁr«-ﬁ""’“__ m\‘{“ T eoume
“ Wave Front E} T —=1== r——— A 2.
0.2 Strains =
0.l t T - 1
| I |
o J
0 10 20 30 40 50 6.0 7.0 80 90 10
Distance From Impact End (inches)
Fig. 9. Wave front profile, = 2.08 X 107¢ sec, m = 3.7.
06
05 as14@EM  T=8.00XI0 *sec
4 m=37
04
S g e g e e e ' 100usec |
80=BM~E§M ——taqueee [ P
e e o 5] e |
% Wave Front Straing =2 | i a— B
0.2
0.1
00 1.0 20 30 40 50 6.0 7.0 8.0 9.0 10

Distance From Impact End (inches)

Fig. 10. Wave front profile, 7= 8.00 X 1078 sec, m = 3.7.




One-Dimensional Wave Propagation 307

0.6
m= 1,92
0.5 Qui/r #{n = B.OOXIO *sec _—
|
— - — 80usec
04\ \\\T“G‘H?m "\\\% "“--.\
| A0usec
0.3 | \
25 el N
.5 A\ 'F-“‘F‘
IS +
"o 2H et —+
= Y I
| Wave Front Straln
[o}] : =
|
|
8 !
o] 1.0 20 30 40 50 6.0 70 80 9.0 10
Distance From Impact End (inches)
Fig. 11. Wave front profile, 7= 8.00 X 107% sec, m = 1.92.
0.6
i ' o 1/e G| 12 0.143X10sec
& ' | m= 5.8l
04| ‘ ------ =1
—-.____'—-—-—-—-.._____“L:—-—____
- T 77777 weve Front siwaine - -t===-1 —
o
& oo i 20usec 40pusec] 60usec]
I
0.1 — 1 T
[ ' [
i L l
o} 1.0 20 30 40 50 6.0 70 8.0 9.0 10

Distance From Impact End (inches)

Fig. 12. Wave front profile, 7= 0.143 X 107% sec, m = 5.81.




308 E. A. Ripperger and Hal Watson, Jr.

for a constant velocity impact as opposed to a constant stress impact, a
constitutive equation such as the one used here results in no constant
strain region, or strain plateau, developing in the first 140 usecs after
impact [16]. Malvern and Efron have presented computed results for
aluminum which show that if a constant stress is applied at the end of
the bar, the velocity very quickly approaches a constant value [7]. This
implies that the wave profiles for a constant stress input should not
differ much from those for a constant velocity input. The difference
which apparently does exist indicates that the wave front profile is
somewhat sensitive to variations in the input conditions. Under these
circumstances, it would be difficult to determine in experimental meas-
urements, in which the input conditions are not precisely known,
whether or not a constant strain region should be expected. It would
also be equally difficult to tell whether an observed constant strain
region indicates a strain-rate independent material, or a rate dependent
material. 3) The step amplitude at the wave front decays quickly in the
first diameter or so of propagation, and then continues to decay, but
much more slowly as propagation continues. For all three values of 7,
the amplitude of the step exceeds appreciably the corresponding strain
shown in Fig. 5 for the non-strain-rate material. 4) With the exception
of strain levels slightly greater than the amplitude of the step at the
wave front, the velocity of propagation of a given strain level is very
nearly constant within the range covered by these computations even
though the constant 7 varies over nearly two orders of magnitude.

Since the velocity of propagation is essentially constant at a specified
strain amplitude, the curve which shows the variation in strain with
time at a given point, is the mirror image of the variation in strain
along the bar at a time corresponding to the time of arrival of the wave
front at the given point. This is shown by the curves in Fig. 13. These
curves represent the strain variation at the impact end, and at one inch
intervals out to four inches from the impact end. Note how all the
curves appear to converge after 80 usec. This is indicative of the forma-
tion of the strain plateau mentioned above.

Strain distributions for the linear strain-rate function K(o — &) are
shown in Figs. 14 and 15. These curves resemble rather closely those
shown in Fig. 11 for 7= 8.0 X 107% sec and m = 1.92 and all of the
remarks made concerning those curves also apply to the linear strain
rate curves. The strain plateau and the constant velocity at a given
strain level are especially in evidence.

Profiles for the “g” function K(o — ¢,) are shown in Fig. 16. These
curves differ markedly from the other profiles that are shown. The
strainat the impact endrincreasesivery rapidly and in 30 usec has
reached a value more than double that reached in any of the other



One-Dimensional Wave Propagation 309

> 1 |
BE o= 17T 1:2.08X10sec.
g m=37
|
04 | | |
g 03 - lin 2 /_._’ | |
= e 7] %leﬂ |
E - _,___1 <
0 Wave Front
o2 Strains
O.|—— {
|
0 |
0 10 20 30 40 50 60 70 80 90 100
Time After Impact
(psec)
Fig. 13. Strain vs. time at 7= 2.08 X 107% sec, m = 3.7.
0.6
- T T[]
' | | . . .
05—+ g=*K(e-5)  K=1.125%X10%sec! ————+——1———

Strain (%)

o
[

o
|

]
| |
7 8 9 10
Distance From Impact End (inches)
Fig. 14. Wave front profile, K= 1.125 X 107 sec™".




310 E. A. Ripperger and Hal Watson, Jr.

0.6 ’
05 9=Klo-a) K=4.5X10%sec”™
DA N
50use
g 3 \
£ o \ l('-’}ll“1 20usec| | \ \ \
- \
-— AY
w 0.2 \\“
S | \
n T wave Fromt || [~
ol ]I | Strains
' |
00 10 2.0 30 40 50 6.0 7.0 8.0 9.0 10
Distance From Impact End (inches)
Fig. 15. Wave front profile, K = 4.50 X 10°® sec™".
1.0
K=8.85xX102sec’!
08 oy=22,500 psi
S 0.
£
2
» 04
0.2
Susec IOusec ISusec

0 | 2 3
Distance From Impact End (inches)

Fig. 16. Wave front profile, g = K(o — ¢,) for K= 8.85 X 107* sec™™.




One-Dimensional Wave Propagation 311

06 -

Curve no. Constitutive Equation De:cj
N o=cl«) Static Curve

| M| —— o =c(e€) Dynamic (curve |
0.5} i i 1 t f €=250 FIG. 4
M3 —— o=cle) Qynomic (curve3
€250 FIG. 4
N —— o=c(e) Static (Susec
| finite rise tima)
M} ----- Klo-&) K=2.25X10%sec’”
M3— — Klo-&) K=1.125X10"sec"
------ (=) c 2810 %0c, |
7 msl92 |
o=ole) anumn: (curve |
€=250 FIG. 2)

04

0.3}

Strain (%)

0.2}

0.l | t=40usec’ f—»

after impact

0 1.0 20 30 4.0 50 6.0 7.0 80 9.0 10
Distance From Impact End (inches)

Fig. 17. Wave front profile at 40 uscc for several constitutive equations.

cases investigated. Obviously, if the input stress is constant, there will
be a constant strain rate at the impact end and the strain will increase
without limit. If K is chosen so as to make the strain rate at the end very
small, then the rate of decay of the step at the wave front will also be
very low. It appears, therefore, that this particular constitutive rela-
tionship is not applicable to the problem of plastic wave propagation in
a rod.

For convenience in making comparisons, some of the profiles previ-
ously discussed are replotted in Fig. 17. These curves represent axial
strain distributions 40 usec after impact in semi-infinite bars, all of
which have the same static stress-strain curve. In addition to the curves
previously shown, some other profiles of interest are shown. These in-
clude 1) Curve N’, which is the profile for a rate independent propaga-
tion with a stress input corresponding to curve b in the insct in Fig. 5.
This is a stress which rises instantly to o, and then increases lincarly
until after b usecs, 47,400 psi is reached. The stress then remains con-
stant. 2) Curve M, which is the profile for a rate independent propaga-
tion assuming the dynamic stress-strain relationship shown by Curve 1
in Fig. 4. 3) Curve M, which is the profile for a rate independent prop-
agation assuming Curve 3 in Fig. 4 as the stress-strain relationship. 4)
Curve C’, which is the profile for « rate independent propagation as-
suming Curve | of Fig. 2 as the stress-strain relationship.

‘The stress-strain relationships for Curves M, M; and C} are assumed
to have the same slope in the elastic portion, as the static stress-strain
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curve. As a consequence, the yield strains for these curves are all some-
what higher than the yield strain shown by the static curve. This causes
the step at the wave front to be somewhat higher for these curves than
it is for Curve N. If this were not the case, the four profiles N, C}, M,
and M; would all be very close together, with M, agreeing most closely
with N. The discrepancy between C; and N is so slight that it is ex-
tremely doubtful that any experimental measurement of the wave
front profile would be accurate enough to justify any conclusion re-
garding which constitutive relationship to attribute to the material.

Finally, it might be noted that the differences between profiles N and
N’ are almost as great as the differences between N’ and any of the
other profiles. This is consistent with the remarks previously made
concerning the sensitivity of the wave profile to the nature of the input
stress to the bar. Since it is difficult to determine experimentally the
precise form of the input, the validity of any form of the constitutive
equation determined by wave profile measurements must be open to
question.

CONCLUSIONS

1. The form of the constitutive equation influences the shape of
the propagating wave front. The shape does not appear to be unique.
By choosing different forms of the equation, proper combinations of
constants or by slight variations in the input, one can apparently pro-
duce the same wave front profile. This is interpreted to mean that
measurements of wave front shapes and strain propagation velocities
are not reliable as indicators of the constitutive relationship.

2. The velocity of propagation of a given strain level is essentially
constant for each of the constitutive relationships assumed. Thus, a
constant velocity in itself provides no evidence at all as to rate sensi-
tivity or lack of rate sensitivity.

3. The rate dependent constitutive relationships considered in
this study, with the exception of K(o — o), all lead to a constant or
essentially constant strain region beginning at the end of the bar and
progressing farther and farther along the bar as time increases. Thus,
the strain plateau cannot be regarded as a distinguishing feature of
non-strain-rate sensitive propagation when the load applied to the
bar is a step function in stress.
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PLANE-STRAIN PLASTIC WAVE
PROPAGATION IN A DYNAMICALLY
LOADED HOLLOW CYLINDER

Ian M. FyrE

University of Washington
Seattle, Washington

ABSTRACT

An experimental technique to create plane-strain plastic stress waves, propagating
radially from the center of a hollow cylindrical specimen, is described. An optical system
is used to measure the circumferential strain variation as a function of time, the propaga-
tion velocities, and, indirectly, the pressure loading required to produce these strains. A
comparison is made between the experimental results and the theoretical predictions of
a rate-independent plasticity theory for an aluminum alloy.

INTRODUCTION

It is readily appreciated that the design of experiments is greatly
facilitated if the theory being verified is well founded. A fair illustra-
tion of this is the experimental work of B. Hopkinson [1] which oc-
curred some forty years after the analysis of Pochhammer [2]. The ex-
tension of the Hopkinson bar experiments to plastic wave propagation
did not have this advantage. The plastic bar experiments preceded not
only the plastic analysis of the experiment, but even a well-founded
theory on which to base this analysis. The simultaneous development
of the experimental technique with the plastic theory may have proved
to be advantageous to the theoretician, but it was most unfortunate
from the experimentalist’s point of view. Without the guidelines pro-
vided by the theory, the experimentalist was forced to assume that the
bar experiments, so successful in elastic wave studies, would also prove
to be so in the plastic case.

The observation of possible strain-rate effects, coupled with the un-
certainties_introduced by the assumption of negligible radial inertia,
adds an almost insurmountable obstacle to the complete understand-
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ing of plastic wave propagation when the results from only one type of
experiment are being utilized. The introduction of the uniaxial strain
experiments of Rice, McQueen, and Walsh [3] in which a plane wave
was generated in metal plates by explosives in contact with one surface,
provided a suitable means for studying high intensity stress waves, but,
as pointed out by Iee [4], the role of plasticity was relegated to a correc-
tion to hydrodynamic theory. This has been overcome to a certain ex-
tent in the plate impact experiments of Barker, Butcher and Karnes [5]
which reduces the stress levels, and uses extremely accurate measuring
techniques to observe the plastic behavior.

In an effort to increase the range of stress wave propagation experi-
ments, work was undertaken to investigate the theoretical and experi-
mental possibilities that might arise from the study of plastic stress
waves propagating radially outward from the center of a cyvlindrical
specimen. These waves were created by electrically exploding a copper
wire along the axis. It was anticipated that experiments designed so
much later in the evolution of dynamic plasticity, could incorperate a
number of features that would both supplement earlier work, and also
emphasize the plastic deformation aspects of the stress wave propaga-
tion. The preliminary results with regard to symmetry, the measure-
ment of the loading, and response of the specimen to this loading are
related elsewhere [6]. For the sake of continuity and to introduce more
recent developments, a brief account only will be given here.

APPARATUS

The essential features of the loading mechanism are shown in Fig. 1.
It consists of a high voltage (20 K.V.) capacitance system in which the
stored electrical energy is suddenly released to the wire contained in
the specimen. The success of this configuration in producing a simple
deformation pattern depends on the character of the exploding wire.
The very nature of an exploding wire would indicate that radial sym-
metry is to be expected. However, the two most desirable properties
are the lack of variation along the length of the wire during and subse-
quent to the vaporization, and the resultant high pressures generated.

Due to the finite length of the wire and, hence, of the specimen, the
period of observation is limited by end effects propagating into the
center of the cylinder where the wave propagation characteristics are
being measured. Assuming that the end cffects propagate into the
center section of the cylinder at elastic wave speed then, for the four
inch long cvlinder usually used. the measurcnent time is reduced to
approximately eight microseconds.

To measure the response of the specimen to this type of loading, an
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optical surface motion detection system was developed of the form
shown in Fig. 2. In the present configuration of the system, a light
beam from a laser is passed between a knife-edge and the specimen.
The subsequent expansion of the specimen reduces the light intensity,
as measured by a photomultiplier detector. To calibrate the system, the
apparatus holding the specimen can be moved by micrometer to simu-
late its motion. As the calibration is a static process, considerable care
must be taken to ensure that the detection system has a rise-time com-
patible with the dynamic event being measured.

The validity of this type of experimental system was checked by com-
paring the theoretical and measured responses of the outside of a
specimen. The loading pressure acting on the inside surface of the
cylindrical specimen was controlled to prevent loading beyond the
elastic limit. This loading pressure history, acting on the inside surface,
was required as a time-dependent boundary condition of the elastic
theory, and was obtained by using the rather involved process de-
scribed in [6]. Due to the simplicity of the strain-displacement relation
in one-dimensional radial cylindrical motion (e, = u/r) the response of
the cylindrical specimen can be plotted as either the variation of the
circumferential strain with time, or displacement with time at the free-
surface. The results for aluminum 6061-T6 are presented in Fig. 3.

It is also possible, using the optical system, to measure the elastic
wave speed from the oscilloscope trace of the free-surface displace-
ment. As shown in the typical trace, Fig. 4, the time from the voltage
peakgtogthegindicationgof surfacegmotion (A-B) can be measured for
cylinders of different outside diameters. The slope produced by plot-
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ting these time values against the different cylinder radii gives the re-
quired velocity. This type of measurement is possible because the peak
voltage is a constant occurrence which represents the initial vaporiza-
tion of the wire.

The testing procedures just described give a workable arrangement
for producing one-dimensional radial deformations. The introduction
of two strain components rather than one, makes it difficult to classify
in terms of strain rate. However, although the stress levels may be
varied quite readily by either changing the inside radius of the cylinder
or the energy released to the wire, the shock-like loading restricts the
application to the very high strain-rate regime.

THE INVERSE TECHNIQUE

Plastic waves in the plane-strain configuration can be readily ob-
tained by the proper choice of specimen material and loading pres-
sures. However, in the study of the deformations produced by the
wave propagation it is important that the loading pressure-time history
which produced these waves also be known. For this reason the experi-
mental program can be considered in two parts: a) the determination
of the loading pressure-time history, and b) the measurement of the
corresponding free-surface displacements.

The useful range of the exploding-wire technique is dependent
mainly on the methods available to obtain the values of the loading
pressures. The initial method used in [6] was necessary in order to con-
firm the measuring processes used to obtain the free-surface motion,
but a much simpler system is possible if use is made of the close agree-
ment of elastic theory with its experimental counterpart.
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The loading pressures acting on the cylindrical specimen are inde-
pendent of the material itself, and are a function purely of the config-
uration and the surroundings of the exploding wire. The smaller the
inside diameter of the specimen, the corresponding higher loading
pressures produced. By introducing a material with a very high yield
strength, for example 4130 steel, it is possible to load the specimen with
relatively high pressures while the stresses still remain below the mate-
rial vield point. The subsequent response of the specimen to this un-
known pressure is that of an elastic material. and the elastic theory is
therefore applicable.

In terms of the radial displacement u, the equation of motion for the
elastic behavior is a second order parual differential equation. In the
case of a dynamically loaded cylinder, the prescribed initial and bound-
ary values required for a unique solution are:

u(r, 0) =0
o
9t | =0

(T,~((1, t) = _P(t)
o b, t)=0

where o, is the radial stress, « the radial displacement, p(f) a prescribed
pressure, « the inner radius and & the outer radius of the cylinder.
However, by virtue of the theory related to the Cauchy problem, a
unique solution for the second order partial differential equation can
also be obtained, in a restricted region, by prescribing the values of
and du/dr along a non-characteristic radius. In the characteristic dia-
gram, Fig. 5, this region is defined as ABC, with the line AB being the
non-characteristic curve at r = b. Of the required values on the line
AB, u is obtained directly from the measured response of the elastic
cylinder, while the other quantity du/dr is a direct consequence of the
stress-free boundary. Thus on AB we have

u(b, t) = u(t) — measured
and

du v

or |,=p 1—vw

o=

where v is Poisson’s ratio for the elastic material. With this data it is
possible to obtain the solution along the line AC. In the region aAC,
which represents the initial propagation of the wave toward the outer
surface, only simple waves exist. Using the properties inherent in sim-
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ple waves, and the knowledge that a4 borders an undisturbed region,
it is possible to extend the solution at a point on AC to its corresponding
point on aC (e.g., A' to a'). Using this technique, it is then possible to
obtain the value of o, anywhere on the line AC. However, on this line
o, = —p, and hence we have the pressure-loading history acting on the
inside diameter of the cylinder from time-zero to {.. Keeping the en-
ergy released and the inner diameter of the specimens constant, the
pressure loading is known regardless of the material used. The length
of time over which this pressure history could be obtained was con-
trolled by the size of the elastic cylinder.

Using some preliminary work in this area carried out by Anderson
[7], a computer program was developed for this computation. Its valid-
ity was checked by calculating the pressure from the displacement sup-
plied by a standard elastic analysis of the kind used to obtain the results
given in Fig. 3. The pressure-loading history reproduced in this fash-
ion agreed, within a few percent, with the original values. The mathe-
matical procedures used in solving for the pressure with the free-sur-
face displacement prescribed are identical with those used in solving
for the free-surface displacement.with the pressures prescribed, and is
an inversion of the physical process rather than the mathematical. The
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pressure as a function of time obtained by this method for a 4130 steel
specimen with an inner radius of 0.252 inch is given in Fig. 6.

PLASTIC WAVE PROPAGATION EXPERIMENTS

In the inital plastic wave propagation studies, it was decided to
eliminate the need to use the inversion method described above by
using specimens identical in size, with regard to inside diameter and
length, as those used in the initial elastic studies. The pressure loading
as given in [6] thus applies to all cylinders with an inner radius of 0.44
inch. Further, to circumvent the problems of considering strain-rate
effects in any theoretical development, the same material (aluminum
6061-16) was used, as it is generally considered to be rate independent
[8., 9]. The plastic flow was then obtained by annealing the specimen
to-reduce the yvield stress-to-avalue.of 7000 Ibs/ins.2. The variation of
the radial displacement of the free-surface with time is given in Fig. 7
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(6061-T6) cylinders with an inner radius of (.44 inches.

for the various outside diameters of these annealed specimens. It was
observed that these strains were appreciably greater than those ob-
tained under the identical loading conditions for the non-annealed
aluminum specimens.

The rather unstable qualities of annealed aluminum may place un-
necessarily severe restrictions on any theoretical development. To
eliminate this problem, the specimen inner diameter was reduced with
a subsequent increase in the loading. Using the inversion method with
4130 steel, the pressure loading predicted by this method indicated
that the non-annealed aluminum 6061-T6 could be loaded into the
plastic regime. This forecast was checked by observing small perma-
nent deformation in the aluminum specimens. The results in Fig. 8

show,the response of aluminum,6061-T6 due to a loading which in-
duced plastic flow.
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Fig. 8. Radial surface displacement of aluminum (6061-16) cylinders subjected to the
pressure loading given in Fig. 6 (inner radius 0.2527).

THEORETICAL COMPARISON

The above results alone do not provide any particular insight as to
the form that a constitutive equation for the plastic behavior of the
material might take. However, the basic objective of this program is
not 1o postulate new forms of constitutive equations, but rather to
offer a measure against which any existing or proposed theory might
be tested. It is to be expected that of the number of possible plasticity
theories available, all should agree to some extent with these results,
with the degree of agreement depending on the validity of the basic
assumptions inherent in the theory. Thus, it is only by a comparison of
different theories, in relation to the experiments, that the significance
of any assumption can be isolated. The obvious theory on which to
make a comparison should be an incremental flow rule. However, to
avoid too cumbersome a computational problem, at this stage of de-
velopment, it was decided to take advantage of a theory developed re-
cently in a paper by Aggarwal, et al. [10]. In this paper it was suggested
that despite the limitations of total-strain theory, a generalized form
of the Koehler-Seitz bilinear model could be made applicable to dy-
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namic problems. Additional incentives were: the equations appro-
priate to the problem being considered were available from [10] in
a form compatible with the elastic solution already obtained, the ten-
sion test for the annealed aluminum readily fitted the bilinear model,
and the desire to check a reasonable simple theory which might be
useable for general analysis purposes.

The equations of motion as they apply to the different states of the
material, and the yield criterion used are as follows:

Elastic
u (0% [ lou wu\__
ar  “ (arz T 72) =0. (1)
Von Mises Yield Criterion
6]21 = (O'r - 00)2 + (o-r - 0-2)2 + (0'0 - 0.2)2 = 2Y2 (2)
Plastic Loading
Pu_ (ﬁl_‘ lf’_u_ﬂ)__l_ 0 o
6t2 Cy 3r2 + r dr r2 - Po (’(Ur > 0¢g 7’). (3)
Plastic Unloading
Pu z<@ l%_ﬂ)_i " #
o~ e + rar 1) po Hiet. <. k. 7). @

where u is the radial displacement, p, the density, ¢; and ¢, the elastic
and plastic wave velocities respectively, ¥ the yield stress in simple
tension. The functions G(a,°, o¢’, ) and H(e}, €f, €5, r) depend respec-
tively on the value of stress at the onset of yielding (see Fig. 9), and the
strains at the onset of unloading. The quantities ¢;, ¢;, G, and H have

the following forms:
[ E(1 —w) ]”2
6=

po(1 +v)(1 — 21y)

=[ Ex(1— ) ]/
7 Lpo(1+ vo)(1 — 2u1)

0 _ _&(14-1/1)(1—21/1)
Gl o, 1) = [1 E, (15 m)(1 — 2v2>]

9 0-7‘0
or

_E, [(1 + v, — Vl):l Aoy — a,0)
E L(1 +w,)(1 — 2,) or

E, [(l +wv) 1+ Vl] g’ — o0

1+unl E, T E

r

def 1 —2v, €f —€f

v d
H(ef, ef e, ) == = (¢ — ) —

11—y ar 1—y r



Plane-Strain Plastic Wave Propagation 325

Fig. 9. Bilinear representation of a stress-strain curve in simple tension.

where E and v are material constants with the subscripts 1 and 2 re-
ferring to the elastic and plastic regimes, respectively. It should also be
noted at this point that the s and €*’s are functions of the spatial co-
ordinates 7, 0, z, and that the value of ¥ changes after initial yielding at
each material point to allow for isotropic work-hardening. It has been
shown [10] that a number of additional conditions must also be satisfied
to meet the requirements of plasticity theory, these being,

- 1 1 Ey
0 <E, <E,, E_(E_Vl)E_2V2>V1
1

and
J.t = 0.

For the case of plastic incompressibility, this leads to a direct relation-
ship for v,

E.
v2=%—(%—v1>E—j- (5)

From a simple tension test of the annealed aluminum, it was possible
to obtain the values for E|, E, and Y. These values are 9 X 10° Ibs/ins.?,
4 X 10° Ibs/ins.? and 7 X 10° lbs/ins.2, respectively. The value of v, was
obtained from an elastic wave experiment, and the value of v, was cal-
culated from (5) giving

v; = 0.351, v, = 0.493.
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In the solution of the elastic equation of motion used in checking this
technique, the method of characteristics was used. The additional
equations (3) and (4) are also of the same form, and by adapting the
method used for (1) to cover the additional material behavior of plastic
loading and unloading, the solution for the plane-strain plastic wave
propagation problem was obtained.

In characteristic form, these equations reduce to five first-order
equations of the form

dr
Et_—ic
du = pdt + q dr

and

_ 1 u G H
where the symbols p and ¢ represent the standard mathematical nota-
tion for du/dt and du/dr, respectively. These five equations are then
solved numerically along the appropriate right- and left-running
characteristics for the five unknowns w, du/dr, du/dt, r, ¢, and hence the
stresses throughout the region. The symbols ¢ and y have the follow-
ing values:

p=0 vy=0 elastic
y=1 y=0  plastic loading
Y= y=1 plastic unloading

the combinations of § and y being determined by (2) and the past
history of the material point.

In this analysis, it was assumed that continuity of displacement, ve-
locity, and the normal stress existed across the elastic-plastic interface.
The radial displacements at the free-surface of the specimen predicted
by this theory is shown in Fig. 10, together with the corresponding ex-
perimental values.

Although it is not the purpose of this paper either to defend or con-
demn the bilinear stress-strain law, a number of interesting observa-
tions can be made with regard to the results shown in Fig. 10. The
displacements predicted by the bilinear theory differed very little from
the results that could be obtained using classical elasticity theory, and
indeed varying the initial yield stress term Y had no appreciable effect
on the results. The very slight variation in the response produced by
the plastic analysis appears to be a direct consequence of the similarity
betweenythe elastic;equationsy(l)yand the plastic loading equations (3);
the left-hand sides of these two equations differ only by the wave speed
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Fig. 10. Computed and measured radial surface displacements of an annealed alumi-
num (6061-T6) cylinder. (Inner radius 0.44 inches, outer radius 0.70 inches).

constants ¢; and ¢,. If continuity is required at the elastic-plastic inter-
face and the values of ¢; and ¢, are approximately equal, then the value
of G(o,°, o¢°, r), which depends on the solution at the interface, may be
small. As a consequence of this condition, the differential equation ap-
propriate to both the elastic and plastic regimes will be essentially the
same. It was noted in this case, where E; was considerably smaller than
E, and plastic incompressibility was assumed, that ¢, was approximately
equal to ¢;. This limitation on plastic low imposed when E, < E, seems
a rather severe restriction on the bilinear model. The possibilities in-
herent in using a multilinear model or removing the incompressibility
requirement was not considered, except it was noted that considerable
plastic flow was predicted when the latter restriction was removed.

CONCLUSIONS

The introduction of a plane-strain configuration was dictated in part
by the importance of considering the relative merits of dynamic plas-
ticity theories in terms of their generalized formulation, rather than in
an overly simple uniaxial form. Although the cylindrical geometry pre-
sents centainymathematical-difficulties, as compared to the bar or plate
impact experiments, the recent work of Perzyna and Bejda [11] indi-
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cates that these difficulties are by no means insurmountable. While at
the same time consistency of the exploding-wire phenomena, and the
pronounced behavior of the plastic flow is clearly advantageous.

The extension of these experiments to include materials with a rate-
dependency does not require any change in technique. However,
clearly the success of this experimental method depends largely on the
use made of the results in relation to the theoretical analysis containing
the constitutive equation in question.
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DYNAMIC PLASTICITY UNDER COMBINED
STRESS

N. CRISTESCU

Mathematical Institute
Bucharest, Romania

ABSTRACT

The paper discusses the theory of propagation of elastic/viscoplastic waves in thin
tubes subjected to combined tension and torsion. Several rate dependent constitutive
equations are used. One compares the results obtained with various constitutive equa-
tions. In particular are discussed the coupling of plastic waves and the concepts of load-
ing and unloading for viscoplastic constitutive equations.

1. FORMULATION OF THE PROBLEM

Let us consider a thin walled tubular specimen of initial length /.
The end x = [, of the tube will be assumed to be fixed, while the other
end x = 0 is put dynamically into a combined motion: a tension and a
torsion (see Lindholm [1]). This motion of the end section x = 0 of the
tube is transmitted along the tube by intermedia of waves. This mecha-
nism of propagation is analyzed below for several kinds of constitutive
equations, in order to give the possibility to choose the appropriate
constitutive equation to be used for a certain material and a specific
type of experiment.

We shall use cylindrical coordinates of reference x, r, 6, the Ox axis
being directed along the symmetry axis of the tube. The components
of the displacements in the axial and circumferential directions will be
denoted by u and v, respectively. Due to the small thickness of the walls
the components o,, 0,,, 0,4 will be assumed to be small and negligible
with respect to o,, and g4,. On the other hand the whole problem is
axi-svmmetrical so that all derivatives with respect to 6 will be consid-
ered zero <d(_)0 = ()). Due to this last assumption and because the radial
motion will be disregarded, the single coordinate which is involved in
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computation is the axial coordinate x. The rotation of various trans-
verse sections of the tube will be obtained as a result of computation.
This will be explained further.

2. THE EQUATIONS OF MOTION

Using the previous assumptions and taking into account that only
two stress components are assumed to be different from zero (these
will be denoted by o,, = o and oy, = 7), the equations of motion are

99 e,
ax e T Py
(2-1)
97 g
ax 0T Py

where F, and F4 are body forces components, p is the density and w,
and v, are the components of the velocities in the axial and circumfer-
ential directions.

If we denote by u, v, w the displacements respectively in the x, § and
r directions, and we take into account the axial symmetry, then the
strain components are

6, =Y =" =M=
rr or 66 r xrxr dx 2
(2-2)
Lo, gol(@gin 1
€0r =9 9x =) Car =9 \or " ox)’ “oe=9\or 7/

From all these strain components two components, namely €,, and
€o; are dominant. These components will be further denoted by e
and vy, respectively.

The first invariant of the strain tensor is

€.+ €gg T+ €
Em — rr xrx (2_3)
3
while the second invariant of the stress deviator is, for the case under

consideration,
2

12 = % Sy = 9'3_ + 72, (2-4)

Two special motions corresponding to two special boundary condi-
tions will be considered. The first corresponds to the case when every-
where v = 0. Then the system (2-1) reduces to a single equation of
motion

file s U,
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and we have only a uniaxial longitudinal compressional motion. The
other particular case corresponds to u = 0; then instead of (2-1) we
have

T . a'Ur
ax+F9—p o (2-6)

which describes a uniaxial shearing motion. These two particular cases
which occur when one or another component of the displacement is
equal to zero, will be denoted below by the index 0 (zero).

3. THE CONSTITUTIVE EQUATIONS

In order to express the constitutive equations, we shall assume, as
usual, that the strain-rate components may be decomposed in an elastic
component and a plastic one

€y = éijE + éij[) (3-1)

where ¢;; are the rate of strain deviator components. The elastic part of
the strain rate satisfies always the Hooke’s law

2(;éU.E = ‘iij (3_2)
and
d-m = SKém (3‘3)

where s;; are the components of the stress deviator, o, is the mean
stress and G and K are the usual elastic constants.

What concerns the plastic component of the strain, having in mind
to apply the theory to various kinds of materials (plastics, metals, etc.)
we shall assume quite general constitutive equations able to emphasize
not only plastic inviscid properties, but also viscoplastic effects. In a

general form, such constitutive equations can be written as (Cristescu
[2], Ch. X)

€;" = Aysia + By, (3-4)
Giving various expressions for the coefhicients A4;;,; and B;; we can ob-
tain several constitutive equations used in dynamic plasticity (see §4).
For the particular stress state under consideration, (3-4) becomes
é‘z"rl’ = <P113"u‘ + ‘Plz«éer + d‘l _
o (3-5)
€or = PorSpp T ©a80p T Y.

Usingm(2=25m3=1=3=3)pandpthegsimplified notation mentioned before
(3-5) can be written as
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du, 2 Iy . .

az (‘?;‘Pn +E) o+ T+ Y
(3-6)

B it (st B) £

ox 3 P20 P22 G T Py

taking into account also that o, = 0/3, E = 9KG/(3K + G). For the sake
of simplicity we shall use the notations

1 1
(24T} 3 (29011 + = G + 3K) A2 = Qi Bi= ,
(3-7)
4 1
QX1 = g a1 Qpy = 205, + ’ Bz = 25

so that the constitutive equation (3-6) will be written in the simple form

aut
Fr = 0,0 + a7 + B,
(3-8)
avt . .
3; = 0,0 + QT + Bs.

4. SPECIAL CASES OF THE CONSTITUTIVE EQUATIONS

Several special cases of constitutive equations (3-8) will be examined.
These will be denoted by P1 to P5.

P1. The simplest possible case is the elastic one:

du,

E =0

4-1)

oo _

ax

which is obtained from (3-8) for
P11 = P12 =021 = Qs =Py = Y, = 0.
P2. A more complicated constitutive equation corresponds to

P11 = P12 = Qo1 = @30 = 0. (4-2)

For instance the Hohenemser-Prager [3] constitutive equation is of
this form

é———ld'-f——l(l———k )O‘

E 37) \/13(2)
] ] k (43
A S S .
Y7967 2y ( \/1;2>> T
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There are many other constitutive equations used in the literature
which can be obtained from (3-8) with the conditions (4-2), but with
other expressions for the functions 8, and 8,.

P3. The last particular case (4-2) can be considered at its turn as a
special case of the more general case

12 = @2 = 0. (4-4)

The constitutive equations (3-8) now become

2 1\ .
T:<§¢11+E> o+ i
(4-5)
du,

Iy .
a_x*<2@22+6> T+ .

Such constitutive equations will be called quasi-linear uncoupled con-
stitutive equations.
P4. If all the coeflicients ¢;; are different from zero but

=4, =0 (4-6)

the constitutive equations will be called quasi-linear coupled constitu-
tive equations. An example of such constitutive equations is the Prandtl-
Reuss constitutive equation

2(; S];[é.'/‘»[

1) o [¥)
H ‘SIIIIISNI n

where the work-hardening law was written in the form

SiiSi; = H <f Skl (1?/‘-[1)) (4-8)

and H' is the derivative of H with respect to its argument.
For the case under consideration (4-7) becomes

é—l:l%-i;a'z]('f—i-g——l—(ﬂ"'
— -~ rT(2) 5 1y (2) !
E 27 H'I{ 3 HI, (4-9)

.2 01 . 1 1 ..
y—gH,[sm010+{2(}+H,18(2)T]A.

The Hencky-Iliushin constitutive equation written in differential
form can also be considered as a special case of (3-8) with (4-6) satisfied.

Generally the conditions (4-6) may characterize more general con-
stitutive equations than the classic inviscid ones.

B5. Einally.the last special.casewhich will be considered is an example
of the general constitutive equation of the type (3-2, 3-4), of the form
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_ ‘S:ij 1 k ?(13(2)) .
€ij = '2~G_ + 2_7) < - m) Sij 213(2) SkiSpiSije (4-10)

This can be obtained easily (Cristescu [2]) assuming that the rate of
strain component can be decomposed as

éij =¢&f + éijVP +éf (4-11)

where ¢;;*% is the viscoplastic rate of strain component and ¢; is the
plastic inviscid rate of strain component. In (4-10) & is a plastic con-
stant, ) is the viscosity coefficient while the function % describes the
work-hardening properties of the body, according to s;6;" = F (I?)sy5 -

In particular, for the problem under consideration, the equation
(4-10) can be written as

L[l 470® 1. 2Z0®» . 1 k

€=z "o7 1@ Ty 1@ o7+ ?);,; (1 - Ig(z)) a
(4-12)

. 2FU0®) . 1 FULP) . 1 k

y—§ 1o O'TO'+|:2—G+TS(2)—T2]T+2—7;<1*W>T-

Such constitutive equations describe the main properties emphasized
by the general form of the constitutive equation (3-4). If necessary,
other effective examples of the constitutive equations (3-4) can be im-
agined, which would emphasize other possible mechanical properties.

By putting % = 0 in (4-12) we obtain (4-3) as a particular case.

The computations which follow were done mainly for the general
form of the constitutive equation (3-8). However, several formulae will
be specialized for the previous five particular cases; in these formulae
indices from 1 to 5 will be used to indicate the corresponding particular
case.

5. VELOCITIES OF PROPAGATION

If we compute the characteristic lines of the system (2-1, 3-8) we ob-
tain four families of characteristic lines satisfying the differential equa-
tion

PP(Q110s — Q200,)(dX)* — p(oy; + age)(dx)?(dt)? + (dt)* = 0. (5-1)

Thus we obtain two velocities of propagation which are furnished by

(5-2)

2 — )
CrL } oyt o E \/(an Qp)* + 4‘1120‘21.

2 _
CrLr 2p(0ty10tps — 0t15051)

It is.easy.to-see that both.velocities of propagation are real, and that
these are finite if
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Ay Oy
# 0.

Qyy Oy

The velocities (5-2) are generally distinct and ¢, > ¢;7; they can coin-
cide, generally, only in isolated points.
Therefore, for the general case (3-8) as well as for the particular
cases P4 and P35 the velocities are variable and furnished by (5-2).
For the particular case P3 putting in (5-2) ¢;» = ¢, = 0 we obtain
1 ) 1

Cr3™ — : Cr3 :
P&y P2

(5-3)

These velocities are again variable, but furmished by much more sim-
ple formulae.

Finally, for the particular cases P1 and P2, by using (4-2) in (5-3) we
obtain

Now the meaning of the two indices L and T is clear: they mark the
longitudinal and the transverse (shearing) waves, respectively. The
meaning of these indices in (5-2) will be explained later on.

In the cases when a uniaxial motion occurs, the computation must
be repeated from the beginning. If v, = 0, attaching to (2-5) only the
first equation (3-8) (with ¢,, = 0) we obtain the velocity of propagation
of the longitudinal waves

, 1 3E

CLo ; W (5-bH)

which for the particular cases 1 and P2 reduces to the first velocity
(5-4). If u, = 0, then attaching to (2-6) the second equation (3-8) (in
which ¢,; = 0) we obtain the velocity of propagation

1 G

p 2Gey, + 1 (5-6)

Cr® =
which reduces to the second velocity (5-4) in the particular cases P1
and P2.

6. DIFFERENTIAL RELATIONS SATISFIED ALONG THE
CHARACTERISTIC LINES

In order to perform an integration scheme and to study the proper-
tiesyofthepwavespinvolvedrigisinecessary to write the differential rela-
tions satisfied along the characteristic lines.
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For the system (2-1, 3-8) the differential relations satisfied along the
characteristic lines (5-1) can be found easily. These are

Fpc(l — pagsc?)du; F pPayyc® dog+ (1 — payyc®)do
+ pay® dr + [pPic*(1 — pausc®) + Brousp*c?
F (1 — pags®)F . F pcta,Fgldt =0 (6-1)

where for ¢ one of the two expressions (5-2) may be replaced (thus in
(6-1) we have four distinct relations), while “d” stands for “interior
derivative” along a characteristic line. It is sometimes useful to write the
equations (6-1) in another form

pasc? du, + (1 — paygc?)dv, + aycdo

1 — payc®
+ — o dr + [::Blpaﬂc.? F Bac(l — payc®)

Fpc

1 _ 2
—ppo‘i FG] di=0 (6-2)

+ @, F, +
which is certainly equivalent with (6-1).

A main conclusion is that all the unknown functions involved in the
problem are present in all the differential relations (6-1), and thus all
the four waves are at the same time shearing waves and longitudinal
waves (this will be discussed in the next section). This conclusion holds
for the general constitutive equation (3-8), but also for the particular
cases P4 and P5. (We must replace only in (6-1) the expressions of o;
by the corresponding values from P4 or P5.)

However, if a constitutive equation of the type P3 is used, then (6-1)
reduces to

Fpcrs dug+ do + (pBicrs® F csFp)dt =0 (6-3)
because 1 — payscys? # 0. Similarly for ¢ = ¢y we obtain from (6-2).
Fpcps duy + dr + (pBacrs® F cpsFg)dt = 0. (6-4)

Thus constitutive equations of the type (4-5) have the property to
separate the two previous coupled waves into two separated simple
waves: one producing an axial compression, while the other a pure tor-
sion. However, if 8, is function of v, and 7 too, and B, is function of «,
and o too, then the two kinds of waves are partially coupled, in the
sense that the two kinds of waves influence each other only through the
coefficients B8, and B,.

Certainly, the constitutive equations P1 and P2, which are special
cases of P3, possess the same property. We easily obtain for P2
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FVpE du, + do + (BIE * \/g F‘,,> di= 0

i (6-5)
FVpG duv, + dr + (ﬁzG ¥ \/% F0> dt=0
and for P1
FVpE du, + do F \/% F,di=0
(6-6)

FVpG dv, + dr + \/%FH di = 0.

Since in (6-6) the functions 8 are no more present, the two waves are
completely separated.

In conclusion, there are two stages in simplifying the theory made
for the quasi-linear coupled constitutive equation (3-8) (or P5 or P4 —
the mathematical difhculties being of the same order). First, if the
constitutive equation is uncoupled, of the type P3, then the two waves
separate, but both velocities of propagation are variable. In the second
stage when we pass to the constitutive equation P2 or P1, both velocities
of propagation become constant.

7. THE COUPLING OF THE TWO KINDS OF WAVES

The possibility of coupling of the two kinds of waves was already
discussed previously, but to make clear this subject we can consider it
by using the jump conditions.

From (3-8) and (2-1) we obtain the dynamic jump conditions across a

wave front
M) [22] 5 [
F S T R Y
[(hr,} _ [80’j| + o7
ax | o] T
[au,] B [80’] [ﬁvt] . [87] 7.9
p&t_ﬁx’ pat_ax (7-2)

where [®] stands for the jump of the function ®. The kinematic jump
conditions are

and

owv ow . L
[Kt—] = — [—a;] for ¥ =u, v, o, 7. (7-3)
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Introducing (7-3) into (7-2), and the result in (7-1) we obtain the fol-
lowing two equivalent conditions

Ju,

dv
2] by = e [2]

Jov ou
l:a_xt] (1 — poec®) = powy,c? I:a_xt:l

From (7-4) it is evident that generally, for (3-8), P5 and P4, because
o5 # 0 and ay, # 0, both kinds of waves are coupled: both produce
a longitudinal and a circumferential motion. This is the reason why the
velocities of propagation (5-2) were denoted by TL and LT.

Itis only if &y, = ay; = 0, i.e., for P1-P3, that the two waves separate,
i.e., for boundary conditions which prescribe at the end of the tube a
velocity parallel to the axis of the tube, and, simultaneously, an angular
velocity about this axis, the two motions propagate along the tube by
two separate kinds of waves. One is longitudinal (denoted by L) and
the other shearing (denoted by T). In the special cases P2 and P3 the
two kinds of waves can influence each other by the intermedia of the
factors B, and B, (see eqs. 6-3-6-5), while in the special case P1 these
are completely separated. This is the reason that constitutive equations
of the form P3 were called partially coupled.

If we compare P3 and P4 we may observe that starting from the
same Prandtl-Reuss form of constitutive equation

QGéij == s'ij + ASU (7-5)

(7-4)

we obtain either P4 if in order to give the explicit expression of X we
use a “global” yield condition (or work-hardening rule), or P3 if we
use a “piecewise” yield condition (or work-hardening rule). Here “glo-
bal” yield condition means a yield condition expressed by a single equa-
tion, while “piecewise” yield condition is a yield condition expressed
by several distinct equations. For instance if the work-hardening prop-
erties are expressed by two equations

o = d(e), T=17(y) (7-6)

where ¢ and 7 are strictly increasing functions, then from (7-5) we ob-
tain P3 and not P4. Since from the physical point of view “piecewise”
yield conditions are either not acceptable, or the functions ¢ and 7 are
to be linked in a functional form, it results that generally plastic waves
are coupled. This must be checked experimentally.

Concerning the mechanism by which the two parts of the rate of
strainycomponentsy(elastic;andyplastic) are propagating, it is easy to
show (in a similar manner as was done by Cristescu [4, 5]) that the
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elastic part of the rate of strain component propagates always by waves.
The plastic (inviscid) component of the strain propagates always by
waves (for P3, P4 and P5) while the viscoplastic components propagate
in an intermediate manner (for P2, P3 and P’5). The coupling concerns
the plastic inviscid components, while the viscoplastic components can
be at most partially coupled.

Returning to the relations (7-4) we can conclude that, if one of the
three possibilities arises

, < 1
Ry 77
> plag, + ap) ( )
we have
du, | < [dvy, _
[GX] > [(%J 7-8)

respectively. In the first case the shearing motion is dominant with
respect to the longitudinal motion, while in the third case a reverse
situation arises. The equality in (7-7) and (7-8) occurs in isolated points
or for a particular type of (theoretical) loading when everywhere & = 7,
which can be called “diagonal loading.” Similarly we obtain

5 = 1

2 = - 7-C
< play; + ) (7-9)

Crr.

from which again yields (7-8) and similar conclusions.

8. INITIAL AND BOUNDARY CONDITIONS

In order to solve the problem, the initial and boundary conditions
must be prescribed.

As for the initial conditions, we shall assume that at 1 < 0 the tube is
at rest and that some constant uniformly distributed stress state is
present, i.e.,

O0=sx<=l) w=v,=0
tor (8-1)
t<<0 o = oy, ™= Ty
Possibly oy = 79 = 0.
The boundary conditions will be prescribed as follows. The end
x = [l of the tube is fixed:

I

X 10 _ o .
; ()} u,=v, =0 (8-2)

\

while the end x = 0 is put into a combined motion
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x=0

= 0} u, = U(0, t), v, =V(0, ). (8-3)

Using the conditions (8-1-8-3) we can integrate the system of equa-
tions (2-1, 3-8) (or one of the systems (4-1, 4-3, 4-5,4-9, 4-12)), in order
to obtain

ut(x’ t)a vt(xa t)v O"(X, t)v T(xv t)'

Then the longitudinal and circumferential motions of the points lying
on a certain circle x = x* can be obtained from

t t
ulx*, t)y= f ux*, Hydt, O(x*, t) = ’lf v(x*, DHdl
0 0
where 7 is the radius of the tube. Summing up u(x, ¢) along the tube
(fixed t) we obtain the variation of the length of the tube, at the con-
sidered time ¢.

9. LOADING/UNLOADING CRITERIA

To make precise the cases of applicability of various constitutive
equations under consideration, the loading/unloading criteria for these
constitutive equations must be discussed. Several possibilities may arise,
but always loading will be associated to the idea that a certain variation
of the stress produces an increase of some of the two plastic strain
components. Because the loading/unloading criteria for the constitu-
tive equations P1-P4 are either well known or particular cases of P5,
we shall discuss further (according to Cristescu [2]) only the loading/
unloading criteria for the constitutive equation (4-10).

A variation of the stress state which produces an increase of both
viscoplastic and plastic components of the strain will be named total
loading. In this case the current stress state satisfies the conditions

1@ >k and I =7 WP (9-1)

where 7 (W?) stands for the value of I/? at the current yield state and
dW? = s;de;f. T (WP) is an isotropic work-hardening parameter, which
can be considered either independent or dependent on the loading
rate history. In (9-1) we have assumed that for any W” we have 9 (W*)
> k?; if a contrary situation arises, the whole discussion of the loading/
unloading criterion can be done in a similar manner. In the special
case when J (W¥) < k? and [ < k2, then F(I/?) is the function which
defines the isotropic quasi-static work-hardening.

Due to the presence of the ideal (inviscid) plastic part of the model,
the total loading-occurs.only-if the stress and strain state satisfies (9-1),
while the stress increments satisty the condition
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I» > 0. (9-2)
If
12>k [@=7W"), but I2=0 (9-3)

the corresponding stress variation will be named partial neutral loading.
It

12>k and 1,2 <m0 (9-4)
or
I >k [@=7W" and [ <0 (9-5)

are satisfied together with

C o O k ) I
[+ 9 . (1 ~ V1<_>> [ >0 (9-6)

the stress variation will be named partial loading (viscoplastic onlv).
If (9-4) 1s satished, but instead of (9-6) we have

- G k . -
12+ 9 . (1 — W) 12 =0 (9-7)
then a pure viscoplastic relaxation (defined locally) occurs.

If (9-4) is satisfied but

;s G k X

12 +2 Y (1 - W\(—;) 12 <0 (9-8)
the corresponding stress variation will be named quasi-unloading; the
plastic strains still increase but slower than in a relaxation process, i.e.,
this process must correspond to a certain unloading at the boundaries
of the body.

Various kinds of loading (increase of plastic strains) may occur for
any finite 12, either positive or negative, as long as I, > #*. When
[/ — — the unloading becomes instantaneous and pure elastic. The
instantaneous unloading must be used in order to determine at anv
moment the magnitude of the elastic components of the strain.

Finally, for 1/ < k* the body behaves pure elastically.

If m — = from the previously discussed conditions we obtain the
classic loading/unloading conditions of classic plasticity. When the
viscosity increases, the influence of the partal loading regime on the
total magnitude of the strain becomes negligible, and the relaxation

time defined as
LA N

-1
G G\ vﬁ)

T =

tends to infinity.
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For the present model the relaxation is a viscoplastic phenomenon
which occurs exactly as for the Hohenemser-Prager model, down to
I = k* which are stable stress states. However, the present model
shows more or less, either plastic or viscoplastic properties depending
on the duration of the experiment and on the maximum stress
reached. Thus, for a certain experiment, the dominant rheological be-
haviour can be made precise by comparing the time of experiment not
only with the relaxation time, but also with a conventionally introduced
“distinguishing time” (Cristescu [2], Ch. I1I).

10. SOME REMARKS

The previously mentioned theory can be used to study the dynamic
plastic behaviour of various materials under combined loading (bi-
axial loading of tubes). The whole picture of wave propagation and
reflection can be described by integrating the previously mentioned
equations. The methods of integration are the well-known numerical
methods (see Cristescu [2]) which for the constitutive equations
P1-P3 can be applied very easily. It is only after more experimental
facts would be available, that such an integration would be possible,
and a full description of the wave propagation phenomenon could be
given.
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UNIFIED THEORY OF
THERMOMECHANICAL BEHAVIOR
OF VISCOELASTIC MATERIALS

K. C. VALANIS
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Ames, Towa

1. INTRODUCTION

Workers in the field of continuum mechanics have had occasion to
witness, in recent times, a significant evolution in the theory of ir-
reversible thermodynamics of viscoelastic materials. Following On-
sager’s work in the early 1930’s there ensued an intense activity con-
sisting in attempts to give a thermodynamic basis to the mechanical
theory of small viscoelastic deformations which, of course, constitute
processes that may be regarded as small deviations from an equilibrium
state. Worthy of mention at this point is the work of Biot [1, 2] and
other able researchers [3-6]. It is of historical interest that this activity
left in its wake a divided opinion. Strong objections were voiced from
the mathematical wing of “natural philosophers” who in a tours de
force attacked such assumptions which, apparently, were arbitrary and,
at most, of debatable validity.

These assumptions were often based on physical intuition and in
some cases, they were unduly restrictive, but nonetheless they pro-
vided a basis from which viscoelastic behavior was better understood
and moreover they led to the later development of mathematically
more elegant expositions.

In 1964 Coleman [8] published his treatise on “Thermodynamics of
Materials with Memory.” This was a work of power and depth, such
depth according to some people, that it gave “no status at all” to the
Onsagerist theories. This view and the subsequent work of Coleman’s
prompted me to re-examine and re-evaluate critically the Onsagerist
theories; the present work is the product of this re-evaluation.

The main results of the present paper may be summarized in terms

343
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of a general theorem and its corollary which establish the existence of a
VISCOELASTIC POTENTIAL from which the stress tensor and the
entropy density are derivable.

Theorem: The constitutive equations of a viscoelastic material with an
initial elastic response and in the presence of large deformation and time vary-
ing, spatially inhomogeneous thermal field, are:

po 9C;; Y (I-12, b)
. o
GVZ—J%—}&O,, (1-2)
(9\1, i .
—5 Go = 0, —hi0,; =0 (1-3a, b)

where 7V is the Piola stress tensor, Cy; is the right Cauchy-Green tensor, ¥ is
the free energy per unit undeformed volume and v is the entropy per unit un-
deformed volume; 0 is the absolute temperature, h; is the heat flux vector and -y
is the rate of irreversible entropy generation; finally q, are hidden thermody-
namic coordinates and p and po are the current and reference density, re-
spectively.*

The proof of this theorem is given in the later sections of the paper.
The interesting aspect of this theorem is that the stress tensor and the
entropy density are indeed derivable from a viscoelastic potential. In
view of the fact that the deformation of a viscoelastic material is a dis-
sipative process this is indeed a surprising result. However, the poten-
tial which in this case is the free energy density, is now a function not
only of C;; and 6 but also of the thermodynamic coordinates ¢,. This is
what distinguishes the elastic from the viscoelastic potential.

The inequalities (1-3a, b) provide potent thermodynamic constraints
on the form of the functions ¥ and A'.

Corollary: The constitutive equations of a viscoelastic material with an
initial elastic response and in the presence of small deformation and
time-varying spatially inhomogeneous thermal fields are:

.o oV
ij — _—— 1-4
ae” n a0 (1-4a, b)
. v
0y= aq qa_hl si (1'5)

*In Equatlons (I=1=1=3)"as'well'as'in siibsequent equations, a repeated suffix implies
summation in the usual fashion, unless otherwise stated.
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—— 4= 0.  —h6,=0 (1-6a, b)

where g;; is the small deformation strain tensor.

2. SOME GENERALLY ACCEPTED RELATIONS

To prepare the ground for the proot of this theorem, 1 begin by
introducing some general thermodynamic relations which are valid *
for small as well as large deformations, in the light of the following no-
tation: x; are the orthogonal set of material coordinates: y; are the
orthogonal set of spatial coordinates: t. p. € and Q denote the time, den-
sity of a medium, internal energyv per unit undeformed volume and
rate of heat absorption per unit undeformed volume. in that order:
7i» ¥y and h; denote the stress tensor, the deformation rate tensor and
the heat flux vector (per unit undeformed area) in that order, all de-
fined in the material system: n denotes the entropy per unit unde-
formed volume and y denotes the rate of irreversible entropy genera-
tion per unit undeformed volume; finally ¢ denotes the absolute
temperature and 6,; the temperature gradient in the material system.
A dot over a quantity will denote its material derivative.

In the above notation the first law of thermodynamics in conjunc-
tion with the principle of conservation of momentum takes the form:

. Po .. ;
e=—7ly,—hi; +Q (2-1)
p
where #; pertains to heat entering the bodv and the semi-colon denotes
covariant derivative in the material svstem; the rate of irreversible
entropy generation is given by (2-2):

. P i . . L, O ¢
0'}’ - ;0 TJ')/I‘_,' + 97] — € — 5 1110,,». (—)‘2)

The Clausius-Duhem inequality (2-3) states that the rate of irreversible
entropy generation y must be either zero (for reversible processes) or
positive (for irreversible processes). Thus

v = 0. (2-3)

Evidently, since the above relations are valid for all materials, they
cannot by themselves describe the constitutive behavior of a particular
material.

For this to be accomplished, some other, additional, assumptions are
necessary which are supported by experimental evidence. Conversely

#Valid in the sense thart they are accepted by the majority of rescarchers in the feld.
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a postulated material behavior is inadmissible if it violates any one of
the equations (2-1), (2-2) and (2-3).

3. RE-EVALUATION OF THERMODYNAMIC THEORY OF
SMALL DEFORMATION OF VISCOELASTIC MATERIALS

The thermodynamic theory of small viscoelastic deformations was
made possible through the introduction of the hidden coordinates.
The physical significance of these coordinates was not immediately
obvious.* However, it is known that an elastic material with small
deformations is described by the following thermomechanical consti-
tutive relations:

1= (e, €;) (3-1a)
0= 0(e, €;) (3-1b)
V=Y, ¢;) (3-1¢)

where €;; is the small deformation strain tensor (g; = vy;;) and ¥ is the
free energy per unit undeformed volume, i.e.:

¥ =¢— 6. (3-2)

In the above of thermodynamic theory €;; and 0 (or €) play the role
of thermodynamic coordinates. It appears reasonable, therefore,
that to describe non-elastic, i.e., irreversible, behavior additional co-
ordinates have to be introduced which play the role of dissipation
parameters. These were called hidden coordinates and are invariably
denoted by g,.

The introduction of the parameters g, led to the following thermo-
mechanical relations for viscoelastic materials, assuming time varying
but spatially homogeneous temperature:

n= 7’(6’ €ij> qa) (3'33)
0 = 0(65 €ijs qa) (3'3b)
V= (69 €ijs qa)- (3-3C)

We pursue the evaluation of past theories (these have been restricted
to homothermal fields, i.e., 6,;= 0). From (3-3a) and (2-2) it follows
that

an . an.]_é (3.4)

S an .
0')’— O'ijeij+ 0 |:a€ €+ aeﬁ EU+ aqa quo

where o7; is the small deformation stress tensor defined in a cartesian

*The author showed in [9] that in the absence of thermal gradients, the hidden co-
ordinates are functionals of the deformation history.
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system, and p = p,. It was now assumed, quite reasonably, that under
homothermal conditions dissipation was a direct consequence of de-
formation, i.e., y = 0 and ¢, = 0 when ¢; =0 whereupon as a conse-
quence of (3-4):
1 9 .
5 — _32 . (3_3) S
d€ €ij9a
If we now consider 7, € and ¥ as the dependent variables and upon
introducing a new set of independent variables 6, €; and ¢, it follows
easily from (3-3) that

owv d oV d o
oo v am

= — =—— 3-6
R P P (3-6)
and thus in view of (8-5) and (8-6), (3-4) becomes
gy — ( ﬁ) : ov | 3.7)
Y=oy de,) € g, de (3-7
It now became logical to call X;; and X, where
v - v ¥ — v (3-8)
ii— T de,, a= 940 -

irreversible forces. since these are indeed responsible for irreversible
entropy generation, and to introduce the controversial Onsager’s rela-
tions which say that X;; and X, on one hand and €;; and ¢, on the other
are linearly related and furthermore that these relations are symmetric
in their coefficients. To be more precise,

Xi; = biji€rr + bijaga (8-9a)

Xo= bija€i; + bapdp (3-9b)
where as a result of the assumed symmetry,

bisit = brtijs bap = bpee (3-10)

The symmetry inherent in (3-9) has been the subject of much con-
troversy; T this equation, however, contains an even more subtle fea-
ture which, so far, appears to have gone unnoticed. I shall return to
this point shortly. Equations (2-3), (3-7) and (3-9) vield the result

0 < 0y = biju€if€r + 2bij0€ii¢a + bapdads (3-11)

*Though (3-5) is usually assumed to apply in the presence of thermal gradients, all
its past derivations were obtained under the restriction of a homothermal field.

It has been shown recently by the author [10] that the assumption of symmetry is not
necessary for the development of the thermodynamic theory.
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Also (3-8) in conjunction with (3-9) yields the relations

oV .
T+ bii€ri + bijega = T (3-12a)
de€;;

oV . .

E T bija€is + bapgs = 0. (3-12b)

Through the use of some quasi-physical arguments [7] V¥ is ex-
pressed, in the case of an isothermal process, as a quadratic in the strain
components and the hidden coordinates, 1.e.,

WV = 2a;u€€0 + Qija€ifda + 20apqals (3-13)

and thus (3-12a, b) becomes
Wii€rr F Qi+ bii€r + bijada = 07 (3-14a)
Aija€i; + QopGs + bapis + bijn€i; = 0. (3-14b)

Because a,s and b,s are both positive definite symmetric matrices [9]
there exists an orthonormal matrix Q.; which diagonalizes a,; and si-
multaneously reduces b,; to a unit matrix, ie.,

Q,vQpsys = axdaps (¢ not summed) (3-15a)

QuyQpsbvs = dup- (3-15b)

Letting g, = Qupgs. and making use of (3-15) in (3-14) and dropping
bars, we obtain the “canonical” form of (3-14), i.e.,

Qi€+ Qjodo + i€ + bingr = gij (3-16a)

Aijo€ij T Gafa T+ Go + b€ =0 (@ not summed). (3-16b)

Without actually solving (3-16) explicitly for o;; we proceed to exam-

ine it more critically on the basis of its physical implications rather

than its mathematical form. To keep the algebra simple consider the
one-dimensional form of (8-16) and let « = 1. Then (3-16) becomes

Q1€+ aq, + b€ + blz‘il =0, (3-17a)
126, + 229y T ¢y + b12€, =0 (3-17b)

as a result of (3-17b), (3-17a) can also be written as
0, = (ay — bipap)ey + (@ — asbis)g, + (b — blEblz)él' (3-17¢)

The solution of (3-17b) is straightforward and in fact

! d
¢ = —f o a2=D (alzel(’r) + by 6—:1> dr. (3-18)
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Attached to the lower limit of integration is the implication that

= 0.

[etting now the deformation process start at time (= () (rather than
t = —x), and in view of (3-18)
Je,

~——} AT — a6 (1) — Di2€(0).  (3-19)

oaT

t

G = (s f e 122077 {alge,(r) + by
0

Consider the viscoelastic materials which possess an 1mual elastic

response (these being by far the most common). and consider a strain

history which takes place isothermally over a verv short period of time

A¢ but at an exceedingly high rate. Then from (3-19).

Gy = —hi.€(t) (3-20)

the mtegral, as a result of the smallness of Az, being negligible since it
1s of the order (At é;) and since €, 1s small compared with €,.

It is a well-observed fact. that these materials under these condi-
tions of loading behave almost elastically (reversibly). insofar as if the
strain path is reversed the material will return to its initial configura-
tion with a negligible amount of work having been performed over the
cycle.

However, (3-20) is not in accord with this observation since now

(ﬁ’:%(bll — biP)€" (3-21)

Thus contrary to expectation the rate of irreversible entropy produc-

tion increases * with the square of the rate of strain according to this

theory. Furthermore, the total irreversible entropy produced over such
1

a cvcle is of order YAt =

59 (b1y — by2%)€ €, this is clearly an inadmissi-

ble situation.

Thus, as far as these materials are concerned. if the theory is at all
applicable it can apply only to processes that are associated with slow
straining.

4. A NEW POINT OF VIEW
The only ¥ possible way to resolve the previous paradox is to take
by =10b,=0. (4-1)
* by — by 1s @ positive quantity since b;; is positive definite in view of (3-11).

7 The apparent alternative by, = by,* leads to the same consequences. upon defining a
new hidden coordinate p; such that p; = ¢, — h.€,.
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Then indeed under high rates of strain
y = 0. (4-2)

The general implication is that, in the case of viscoelastic materials with
initially elastic response, y does not depend explicitly on the rates of strain but
only implicitly, through q,. Thus in (3-11) b, = 0, b;;, = 0 and,

0 = bapdags = 0 (4-3)

the equality being valid if and only if ¢, = 0.

We shall see that this equation is of extreme significance in that a)
it removes this inconsistency which existed in the theory of linear ir-
reversible thermodynamics of viscoelastic materials and b) it gives rise
to some elegant and far-reaching results. Thus, (3-12) now take the
surprising form

v
Oy — aGU (4—4?1)
v .
—aqa + bopgs = 0. (4-4b)

These are the isothermal constitutive equations of linear viscoelastic ma-
terials with an initial elastic response.

Equation (4-4a) is identical in form to the constitutive equation of an
elastic material, only now ¥ is a function of ¢; as well as g,; also (4-4b)
is identically satisfied for elastic materials since ¥ does not depend on
go; furthermore, in this case b,z = 0.

Let’s now re-examine the behavior of this type of viscoelastic material
with one non-vanishing component of strain and one hidden coordi-
nate, as before.

Recalling (3-17) and writing y0 = bg,® one obtains the relations

oy = ag; + dg, (4-5)
0 =de, + cq, + bq, (4-6)

where a,;, = a, a;, = d, a,, = c.
Integrating (4-6) one obtains
t o€,

d
G="— €+ » gt e dr. (4-7a)

. . . d
Note that in the equilibrium configuration ¢, = — ~ &

Substitution of (4-7) in (4-5a) yields the result

& dr. (4-8)

4 &? f‘
—(, = =) )
oy (a c) €, () + e ). e o
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Equation (4-8) represents a three-element linear viscoelastic model
as shown below:

G
m G- GE
where
d2 . . d2
Gg=a— - G—Gp= — (4-9a)
G=a (4-9b)
n=b. (4-9¢)

With a little algebra one can show that under all loading conditions,
g =— <-f—) X (strain of the dashpot), i.e., ¢, has a clearly understood

significance. From a physical viewpoint, under high rates of loading
the dashpot has little time to relax, ¢; = 0 and the model behaves like
two springs in parallel. Thus, in this case ¥ = 0. For very slow loading
the dashpot extends without offering any resistance ¢, = o,/G,., but
¢, = 0 and thus, again y = 0. The theory is now internally consistent.

It can also be shown that ¥, where ¥ = (a;,6,> + 2a,.€,q, + a2:9,2),
is the strain energy stored in the springs. Indeed if €, and €, are re-
spectively the strains in the spring and dashpot that are lying in series
such that €, + €;; = €, then

N

1 Qs 1 a;»?
2 12

\Ij—-—_ (an I— 612+_ 5122
2 [£27) 2 ayy

= 1Gpe + 3G — Gp)ey? (4-9d)

which proves the assertion.
Also the rate of entropy production can be expressed explicitly in
terms of the properties of the model and, in fact,

. .. ay® |

0y = bg\4, = P €.(e; — €11) (4-9e)

22
where use has been made of the relation ¢, = — % €, and (4-6). From

22
(4-9e)

L1

Y = 5 €101 (4-9)

0
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Thus, under isothermal conditions, the rate of irreversible entropy production
is equal to the rate of work done in extending the dashpot divided by the abso-
lute temperature at which the current extension is taking place. Equations

(4-9d) and (4-9f) merely confirm the fact that under isothermal con-
ditions

W= W+ y6. (4-9g)

We now proceed to examine a more general model such as the one
shown below:

G m
(HVVV\—
&N

Gz 2

In this situation,

07 = bapdags (. B=1,2---n—1) (4-10)

Equation (4-10) is a positive definite quadratic form and can be re-
duced to the canonical form

n—1
0y="3 1., (4-11)
r=1
by a suitable linear transformation on the ¢,’s.
Equations (4-4a) and (4-4b) now become

v
o, = v, (4-12a)
—g—;g + Nyde =0 (o not summed). (4-12b)
Let ¥ be a quadratic, as previously, in g, and ¢, i.e.,
Y = 301,1€,° + 0106190 T 200pdads- (4-13)

The transformation which reduces (4-10) to the canonical form
(4=1:1)smay-be-chosens(withoutloss,of generality) in such a way as to
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reduce (4-13) to the canonical form

V= %ullel2 + o4 o€, + E éﬂaqaaa- (4_1321)

Thus (4-12a) and (4-12b) now vield the result
O] = A€ T A14Ga (4-14a)
€11yt oo + Ml = 0 (& not summed). (4-14b)
From (4-14b) one can obtain ¢, explicitly and in fact

o 7 ~ -
Go = _n‘lf » ¢ Pl Ve (1) dr (4-15)

Ay ~ : : 1 1
where p, = (—) After mtegration bv parts one obtains an equation

[

analogous to (3-18). i.e.,

_ Uja

/i

p .
a 13 .
€, + mf e Pl —L (7 (4-16)
la o J—= ar

and thus the stress may be obtained from (4-14a) in the form

Hn-1 (11 2 n—1 a 2 4 OE

« o s —_

o, = <a“ — E ) €(t) + 2 — e”'a(”‘)—,) Ldr.  (4-17)
¥ oT

1
a=1 @ a=1 A, -

It is easily verified that n, are indeed the viscosities of the dashpots.
2

Lo

92
(llu_ . . N . . . .
4y — E — 1s the stiffness G, of the lone spring and is the stiffness

Uy T
G, of the spring in series with dashpot «.
Note again that the coefficients m, entering in the expression for the genera-
tion of irreversible entropy production (4-11), are the viscosities of the dashpots.
To my knowledge this is a new result.

Generalization to Three Dimensions
The generalization to 3 dimensions is straightforward. The expres-
sion for ¥ is still (4-11) but now ¥ is expanded in the form

WV = 30€5€00 T Qija€ida 2 200l oa (4-18)

[e3
Hence, in view of (4-12),
O = Aja€r T Ajjola (4-19a)
0= a;jn€i; T Uafa T Mafa (& not summed). (4-19b)

Equation (4-19b) vields immediately
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P t
o= — %’% e Pl e, (T)dT (¢ not summed) (4-20)

which after integration by parts simply becomes

t
Go=— %‘i" {ﬂz(t) ._f e Palt—D 6"1 dr} (o not summed). (4-21)

(42

Substitution of (4-21) in (4-19a) yields the result

Qiiolila a Jd€;,
Ti; — (az’jkl - E ua = ) €r(t) + 2 “aa“af e Palt™? 6_7]:1 dr  (4-22)

« o« —®

which in obvious notation may be written in the more compact form,

t ]
74 = Cluen(® + [ Cluatt =) S ar (4-93)
If the material is isotropic then
c° ikl ™ =’ 8118“ + I (611.8 i+ 811811\) (4'243)
Clipa(t) = N ()08t + ! (¢)(8u:dn + 8udi)- (4-24b)

Substitution of (4-24) in (4-23) yields the classical relation

t

€
o5(t) = New®8y + 8y | N—n) =2 dr

t 0€;:
+ 2uley(t) + 2 f wie—mnS2dr (4-25)
which can be reduced to a further more compact form by writing,
AD) = NH(@®) + N(@) (4-26a)

u(t) = nH(t) + p'(0) (4-26b)

where H(t) is the Heaviside step function, in which case

oy(t) = 6,,J' )\(t~7) E dr + 2] w(t— ) —“ dr.  (4-27)

5. MATHEMATICAL FORMALIZATION

At this point we shall proceed with the fullest possible generality tak-
ing into consideration large deformation as well as thermal effects, i.e.,
large changes of temperature and thermal gradients.

Consider-an-infinite.continuous-medium. Given body forces g; and
heat source distribution O the medium will experience deformation as
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well as thermal changes. The whole process is described by the follow-
ing set of variables, sixteen in number:

p. ™. m, €, h;, y; and 0

all of which have been defined. These unknowns are connected by the
relations

) _po

i :; (5-1)
Ti‘i;‘; -+ pgl = pai (5—2)
. Po  ;in i 5
e:é—pT-}CU—k,i_'_Q (3'3)
1. ,
Oy = % T9C,; + O — & — r k0, =0 (5-4)

where (5-1) is the conservation of mass and (5-2) is the conservation of
momentum; (5-3) and (5-4) have already been discussed. We have 16
unknowns and 5 equations in addition to the constraint (5-4), i.e., there
is a deficiency of eleven relations. The implication is that the response
of a particular material cannot be depicted from the field equations
above but what is needed, in addition, is a set of eleven constitutive
equations (equations of state) relating the state variables 7/, 7, €. 4; to
the thermodynamic coordinates y; (through C;;) and 6.*

Equations of State for Elastic Materials

To fix ideas consider first an elastic material. By definition the state
variables of such a material depend on the current values of the ther-
modynamic coordinates (possibly on their current gradients but not
on their past values). Thus the equations of state will be of the form

= 74(Cy, 6, 6.,) (5-5a)
n=mn(Cy, 6. 6.) (5-5b)
e=¢€(Cy. 06, 0.) (5-5¢)
hi = hi(Cy;. 6. 0.) (5-5d)

where we have included dependence on 6,; as a possibility.

Let the time range of interest be (—=, ¢) and let 7 be such that
—x < 7 < (; we denote the history of a function f( ) by f(7) and denote
the current value f(¢) of the function by f. Following Coleman we ob-

*The reasons for the choice of Cjas atensorial thermodynamic variable have been
discussed in the literature extensively and will not be elaborated upon here.
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serve that the history of motion y(x,, 7) and the history of temperature
0(x;., 7) (assumed to possess all requisite derivatives) completely deter-
mine the state variables through (5-5) as functions of x; and r for all
x;; and 7. Hence, (5-2) and (5-3) determine g; and Q uniquely. Further-
more, (5-4) being valid for all sets of g; and Q, places important restric-
tions on the form of the equations of state (5-5). Thus, all histories of
motion and temperature, with the requisite amount of smoothness im-
posed by (5-5), (5-1), (5-2) and (5-3), are “thermodynamically admis-
sible.”

At this point we introduce the free energy density ¥ in terms of
which (5-4) becomes

2P0 1

T

0y hig.; = 0. (5-6)

Evidently since ¥ = € — 16 and in view ot (5-5b, ¢)

V=Y. 0. 0.). (5-5e)
As a consequence of (5-5e) we can rewrite (5-6) as follows:
0<0'—% i _ﬂc_a_\gg_ilf_g — é—lhiﬂ (5-7)
= by = 2 70 aCy i 5 90., N 0 sie -

Fixing Cj;, 0. 0.; (at 7=1), we fix 77, m, € and k; (at 7=1), as a result of
(5-5). Furthermore, since any history C;;(7) and 6(7) is admissible then,
obviously C;;, 6, 6; may be chosen at will. For all such choices inequality
(5-7) must not be violated. Evidently this is only possible if and only if

o .
5; =0 (0—88)
. 2p oV 5
T h G, (5-5b)
v
n="%9 (5-8¢)
—hio.; = 0. (5-9)

Thus, in all possible thermomechanical states the siress tensor and
entropy density of an elastic material are dertvable from a potential which is the
free energy density ¥ such that

¥ = W(Cy;, 0). (5-10)
Also, for any such thermodynamic process the inequality (5-9) must

hold and may be regarded as an equality only in the special case of
0,,=0, or hi=0.
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Equations of State for Viscoelastic Materials

Viscoelastic materials differ from elastic ones, insofar as while they
are in a dynamic state, their state of stress is a function of the whole
previous historv of their deformation; on the other hand. the state of
stress of these materials so long as they are in a static state, is a function
of the static configuration only and is independent of the previous
history of deformation. Therefore. equations of state of these ma-
terials must take this fact into account.

One wav of doing this is to introduce further thermodynamic co-
ordmates which plav the role of dissipaton parameters. These are
none other than the intrinsic coordinates ¢, introduced in the linear
theory.

At this point we are not overlv concerned with the explicit form of
g« provided that these are functionals of the deformation history
C;;(7), so long as the material is in motion, and simplv functions of the
cquilibrium deformation when the material is at rest.

With these thoughts in mind, the equations of state for viscoelastic
materials will be given by (5-11).

= 7(C};. 0. g4 0.) (5-11a)
n=n(Cy, 0. go 01) (5-11b)
e=¢€(C;, 0, q 0.) (5-11c¢)
hi = hi(Cy;, 8. g 0.)). (5-11d)
In addition,
Y=Y, 0. g, 0.). (5-11e)

The intrinsic coordinates ¢, are now defined by a general set of func-
tional relationships of the type: #

{]u :/a((Jtn 0. qa) (5—12)

which are the non-linear counterparts of (4-19b) with thermal effects
included, subject to the initial condition that ¢, = 0 prior to the initia-
tion of a thermodvnamic process.

Just as in the case of elastic materials given the functions y;(x,, t) and
0(x,, t), sufficiently smooth, ¢, may be found by solving the set of first
order differential equations (5-12) hence 77, 7. € and %; may be found
from (5-11) and hence ¢(x,.t) and Q(x,, t) are determined uniquely
from (5-2) and (5-3). On the other hand, (5-6) now assumes the form

#For materials with an initial elastic response. Note that (5-12) satisfies the stipulation
on ¢, stated previously.
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(200, OV . ( a\If). L) R P
0')/ = < o T acij) Cij M + 30 (7] aqa qa 00” 0,1' 0 hB,i = 0.

(5-18)

Repeating our previous argument, fixing C;;, 0, 6,; and ¢, at time ¢
fixes * g, but leaves C;;, § and 6,; arbitrary. By varying one of the last
three in turn while keeping the remaining constant, one arrives at the
conclusion that inequality (5-13) will not be violated if and only if

(f;’;l: =0 (5-14)

i =—2pi: % (5-15a)

n= -%% (5-15b)
eyz—;‘%qa—%hw,,— = 0. (5-15¢)

Now prescribing C;; and @ at a specific x;. for all values of 7 in the interval
(—, t) fixes the first term of inequality (5-15¢). Furthermore, this term
is independent of 6,;. Hence, for #,,= 0 and in view of inequality
(5-15c¢),
ov .

~ o, de = 0. (5-16a)
Similarly, since we can arbitrarily vary the second term of the in-
equality by varying 6,; for any fixed value of the first term, it follows
that

—Ki6,, = 0. (5-16b)

Finally as a result of (5-15b) and the definition of free energy, € and 7
are not functions of 6,;. Thus, the theorem stated in the introduction is
proved.

A further relation can be derived at this point. Using the definition
of free energy in conjunction with (5-15a, b) and the first law of ther-
modynamics, one finds that

im0 ()21 g 1

* As a result of (5-12).
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6. APPLICATIONS

I shall proceed with the application of the above theory with the
object of developing explicit forms of constitutive equations of visco-
elastic materials for two cases:

(i) Non-isothermal small deformation
(i1) Isothermal large deformation

Before this is done I would like to discuss at greater length the char-
acter of the intrinsic coordinates ¢, and how thev relate to the rate of ir-
reversible entropy generation. It will be recalled that, where visco-
elastic materials with an initial elastic response are concerned, y does
not depend on the strain rates explicitly, but only implicitly through
Go- Thus, in complete generality one can write, in the absence of heat

conduction, 0y = Ty(de) (6-1)

where T’y is an unknown function and ¢, are given by (5-12).

The intrinsic coordinates g, remain largely undefined quantities
provided they satisfy (5-12) for any physically meaningful functions
fa However, it is important to note that once I'y and f, have been given,
then ¢ can no longer be functionally independent but must satisfy
(5-15¢) which in the absence of heat conduction becomes

oV

Oy + B_qa Go= 0. (6-2)
In the presence of heat conduction (6-1) must, of course, be modified

since now y must depend on 6,; as well. Thus,
0y = I'(qa» 0,). (6-3)

Again, once f, and I' are given, ¥ is determined from (5-15c). Fur-
thermore, since ¥ does not depend on §,; the part of 3 which does not

. owv ..
contain 6,; must be equated to — E G, whereas the remaining part must
o

be equal to %9 hie,;.

Let us consider the physical situations where ¢, and 6,; are small.
Evidently, 6,; imply small thermal gradients. Also, on the basis of our
early discussion ¢, will be small (a) if the strains are small, (b) if the
strains are large but the time of interest lies within a small interval
following the initiation of straining and (c) if the strains are large but
the rate of straining has been slow in the recent past.*

# (b) and (c) are a direct consequence of the definition of ¢, by (5-12). For a lengthy dis-
cussion of this point see [9].
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In these situations, in the light of ¢, and 6,; being small and y being
positive for non-zero values of ¢, and 6.;, (6-3) admits the following
Taylor series expansion for suitable choice of ¢,:

9‘)’ = 2 naq.aqa + baiq‘aeﬂ + aiﬂ,ie,j (6_4)

where the coeflicients m,, by and a;; may depend explicitly on C;; and 6.
Equations (5-15¢) and (6-4) will be compatible if

- W = Nuf. (@ not summed) (6-5a)
_h’i = a,-ja,j + ba,‘(}n (6-5b)
since ¥ does not depend on 6,;.. Also A; must vanish for vanishing 6,

so, evidently, b,; must be zero. Thus, in the presence of heat conduction
and some special cases of large deformation *, we have the relations

Y
99
_h,' == a,-ﬂ,‘,«. (6_6b)

+ N =0 (6-6a)

With this elaboration we are now in a position to return to our task
as set out at the beginning of Section 6. The fundamental equations
which are applicable to all cases of heat conduction and strain are
(5-15a), (5-15b), (5-15¢) and (5-17). Equation (6-6a) applies when con-
duction is absent and (6-6a) and (6-6b) apply jointly under the condi-
tions specified.

Case (i). Non-isothermal Small Deformation

For the sake of simplicity let us also assume that temporal variations
in 0 are also small, i.e., # = 6, + { where 6, is the reference tempera-
ture. Let the reference state be defined by the condition ;= 0,4, = 0,
{ = 0, x = 0 where x is the entropy increment associated with the above
process such that

N =mo+ X- (6-7)
Then (5-15a, b, and ¢) become

_ 0¥ .
g = aEU (6-83)
__ 9y
x="7% (6-8b)

* Such that ¢, and 6,; are small.
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) SV o
607 - 9% 4o 6() hieai (6‘8C)
whereas (5-17) becomes
v v,
= g% Lo
hii= 0, <(')C> e Ge + Q. (6-9)

In this event ¢ can be expanded in a Tavlor series and terms higher
than the second can be ignored, whereas terms of the first order must
vanish to satisfyv the initial conditions. In the case of an isotropic ma-
terial this expansion will take the form
dl = %Mei.iei} + %)\elcl.fii + (2[1(1“6/.»;, + %(1(1(/a(/a + (I’GM{Q + (((’k(/aé + %Bgl (()_ 1 0)
where all repeated indices are summed. Substitution of (6-10) in (6-8)
and (6-9) and after some routine manipulations vields the following
expression for g, (when Q = 0):

Nela T Aufe + o€y + aid = 0 (@. not summed) (6-11)

and the thermomechanical constitutive equations: *

I3 &
(r,-j=8f.ff AME—¢€) - O d¢’ +f pig— ¢ »@ de’
( {

) - 73 ) aé’
J‘ (& — & _{ d&' (6-12a
&E—¢') PYE =d)
_— dlé " : ( €ri ()qu %
arkl.; = FYE d¢ 9(,J: alé — ¢ ) 5 A&’ + E Na 9E €
(6-12b)
where ¥

nu = nllua’l'{ C(f)} (6'1 3)

k is the coefhicient of heat conduction, and

todr

=| — = 6-14
fu a'/‘[C(T)] b )

Evidently, the material which is described by (6-11) and (6-12) is
thermorheologically simple in accordance with (6-13) where a,{{(1)]
1s the “shift factor” of temperature.

The physical significance of the function a(£) is obvious from (6-11).
That is, if €; = 0 and {(¢) = H(¢) where H is the Heaviside step function

* The algebraic details of the derivation of (6-11) and (6-12) are omitted: the functions
A& wl(é). alé). and (&) are finite sums of decaving exponentials.

FThe dependence of n, on temperature as given by (6-13) is of a special character
typical of thermorheologically simple materials.
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then o;; = §;(¢). In other words a(¢) is the hydrostatic stress induced
in a volume of isotropic viscoelastic material when strain is prevented
and the initially uniform temperature is given a unit step jump and is
kept constant thereafter.

The physical significance of C,(¢) is found from (6-12b). In the ab-
sence of strain,

kG = —hy; (6-15)
where —h;; is the rate of heat input per unit volume. Thus, ignoring

d
second order terms, in §,, in (6-12) we let 9 = H(¢). Then,

a¢

Rate of heat input/unit volume

C(&)= @ (6-16)

Note that (6-11) and (6-12) are analogous to the elastic thermomechani-
cal equations where A, u, a and C, are constants.

I am not aware of any experimental determinations of C,(§) and «(¢)
and as far as I know these functions are taken as constants in practical
applications.

Case (i1). Large Isothermal Deformation

As mentioned in the opening paragraphs of Section 6, the choice of
functions f, is open. Then in the light of (6-11) we set

Got Pala + d(Ci;) = 0 (¢ not summed) (6-17)

where p, and C, are positive constants and ¢, are functions of C;; only.
The differential equation (6-17) can be solved for ¢, in the light of the
initial condition that at ¢ = —0 the material is undisturbed. Thus,

T e e (6-18)

aCy;
depends on Cj; only for large values of « and further that p, = ® as
a — » then (6-18) becomes [9]

If (6-15) is integrated by parts and the assumption is made that

1 1 9¢, (* dCyy
= — N - —ptt— ki -
== GalCo0) + o 58 [ i Tl ar (619
Since in the case considered here ¢, are not necessarily small the ex-
pansion of I'(g,) into a Taylor series will not terminate at the quadratic

term but may include higher order terms. Thus,

I'(ge) = bapalle + boprdadsdy + ° * (6-20)
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where bz, bagy, €tc., need not depend on Cj; since ¢, depend on the de-
formation through (6-18).

For the sake of fixing ideas let I'(¢,) terminate at the quadratic term
in (6-20). The equation (6-20) will be compatible with equation (5-15c¢)
in the absence of thermal gradients if

bap(s + % = (). (6-21)

Utlizing (6-17) and substituting for ¢z in (6-21) one finds that

A4 o
bop(Ppgs T padp) = ;7 (6-22)

o

whereupon integration with respect to ¢, yields

\Ij = %baBqua(IB + baB(bea + \PU(CU)~ (6-23)
At this point one may use (5-15a) to determine 7;; and in fact
_2p {911/0 (7056}.

i Y +ba o S
T, ac; S To

(6-24)

At this point we can utilize (6-19) to substitute directly for ¢, in (6-24)
and obtain the constitutive equation

2 {M_ bus ad)a}

Do GC,-j —d)a(cu)fm

Tij =
Pa

2p baB a(bB ad)a f[ 8C/-[
+—— e Pl —— dr. (6-25
Po Pa 0C; 0Cy, oT - )

—x

Itis a well known experimental fact, that in the equilibrium configura-
tion the stress tensor is derivable from a potential. A perusal of (6-25)
shows that this is possible only if b, is expressible in the form:

bag = Buadus (@ not summed) (6-26)

in this event

20 (9 w 0b, by (1 o
:_p{ﬂ_’_ B_ (b d) f e—p&(ﬁr)%d,r} (6—27)

Tij S
T po L0C; = Pa dC;; 0Cyy

—%

where

2 (Ba .

bo = o — E 1 (—p_> (6-28)
Lizispinterestingsthat-ateverysshoretimes following the initiation of the
deformation
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_2p 0¥,

7 3Gy

(6-29)
whereas at long times, i.e., as the material approaches an equilibrium
state,

= 2p 9%,

, -30
i po 9C;; (6-30)

In other words, ¥, and ¢, are the instantaneous and equilibrium poten-
tials, respectively.

Finally, if we retain third order terms in the expansion given by
(6-20) and omitting details we find the following form of the constitu-
tive equation:

_2p dd ! . . o
Tij = E {GCU + fﬁx Gi(Cr(t); t — 7) Py dr

L dCy 9C
+ f f d‘ijklnm(crs(t); t—m — 72) —5'];1 — dTl dT‘_’}' (6‘31)
—x J—x T aTZ
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STATIC AND DYNAMIC MATERIAL
BEHAVIOR OF SYNTACTIC FOAM

W. E. JAHsSMAN

Lockheed Missiles & Space Company
Palo Alto, California

ABSTRACT

The use of foams or porous solids in a variety of applications such as energy absorbers.
buovancy materials. etc. has renewed interest in the accurate representation of the
properties of these materials. In particular. a “compressive constitutive law™ or equa-
tion of state is needed in the calculation of the dvnamic response of the material to sud-
denly applied loads. Static testing to provide such data is appealing because of its
simplicity: however. the importance of rate effects cannot be determined by this one
method alone. Therefore. additional but numerically limited elevated strain-rate tests
must be run for this purpose.

In the present paper, results of uniaxial strain static and gas gun compression tests on
syntactic foam are reported. The foam is buoyant and is composed of hollow glass
microspheres (average diameter 100 microns) embedded in an epoxy resin. Static testing
consists of compressing a 0.25 cm X 2.5 cm dia. wafer between carefully aligned 2.5 em
dia. steel pistons. Lateral expansion of the wafer is suppressed by mounting it in a thick-
walled (10 cm OD. 2.5 cm ID) cylinder. The degree of expansion is monitored by a cir-
cumferential strain gage mounted on the outside of the cylinder, coplanar with the foam
wafer. Loading is increased until crushing of the microspheres. as indicated by a flatten-
ing of the stress-strain curve and by photomicrograph, is complete.

Dynamic testing is conducted using the LMSC plane wave generator (“gas gun”).
Impact pressure and specimen particle velocity are recorded using a quartz transducer
as impactor. Dimensions of the foam specimen for this test are equivalent to those of the
static test. The data reduction technique for the conversion of stress-strain relation to
impact stress-particle velocity behavior is based on an analysis of Courant and Friedrichs
[1] which can be adapted to a rate-independent crushable-locking material (i.e., foam).
Comparison between static and dynamic tests shows reasonable agreement at higher
stress levels, with discrepancies at lower stress levels interpreted in terms of rate effects.

1. INTRODUCTION

Syntactic foam is a composite consisting of hollow sphere fillers in-
corporated in a resin matrix.* The fillers, usually glass micro-spheres

*The word “syntactic” is the adjective form of “syntax” (Greek sun, together. + tus-
seinsptoppuinsonden)swhichsmeanssconnected system or order; or orderly arrangement.
Hence, syntactic foam is an orderly arrangement of hollow spheres in resin.
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approximately 100 microns (~4 mils) in diameter, provide strong, im-
pervious supports for otherwise weak, irregular voids. As a result,
syntactic foam has attracted considerable attention both as a con-
venient and relatively light-weight buoyancy material [2] and as a
porous solid with excellent shock attenuating characteristics [3]. The
latter characteristic is achieved through crushing of the spheres and
filling in the voids with resin.

Interest in the use of syntactic foam as a shock attenuator led to the
present study of its static and dynamic mechanical properties. Particu-
larly important is the influence of loading rate on stiffness and crushing
strength, since oversensitivity of either of these parameters can compli-
cate the prediction of the effectiveness of a foam system as an energy
absorber.

Accordingly an experimental and analytical program was under-
taken to establish the magnitude of the rate effect over the range of
interest. From a materials testing standpoint, it is clear that the rate
range is bounded from below by zero, which is well approximated by
the so-called “static” testing machines, and from above by rates
achieved under “instantaneous” impact, which are approached in gas
gun tests. Assuming monotonicity of the material behavior over this
extended rate range, one may argue that data from the “bounding” ex-
periments will exhibit the maximum discrepancy and hence provide a
gross measure of the material sensitivity to rate effects. The experi-
ments conducted in this program are designed to follow this philos-

ophy.

2. MATERIAL AND SPECIMEN PREPARATION

Seven 5-cm (2-in.) diameter syntactic foam cylinders were cast from
a viscous mixture of hollow borosilicate spheres (31.2 weight %) and
epoxy resin (68.8 weight %). Sphere diameters ranged from 0.3- to
1.25 X 1072 cm. Air bubble entrapment in the mixture was minimized
by using a hot casting technique. As a result density variation among
the seven cylinders was less than 4%; this figure was reduced to 2% by
selecting the most uniform five of the seven cylinders for actual testing.
Table 2-1 lists, together with other properties, the as-cast dimensions
and densities of the selected cylinders.

Determination of the sonic velocity (column 7) was made by dividing
the cylinder length by the sonic transit time (column 6). This latter
measurement was obtained by introducing a sharp (<1 usec) pulse to
one end of the cylinder by means of a piezoelectric ceramic disc. The
disc.was-acoustically attached to_one end of the cylinder by a heavy
grease and an identical element was mounted on the other end of the
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cylinder to receive the signal. The waveform received by the element
was displayed on a Tektronix 535A oscilloscope and the sonic transit
time was measured by a delayed sweep system. To insure accurate time
measurement, this system was calibrated with a time mark generator.
Comparison of sonic velocities measured by this technique for known
reference materials (aluminum, lead) with published data [4] shows
good agreement, with a maximum deviation of 2.3% for aluminum and
6.6% for lead.

From these four cylinders, disc specimens were machined for static
and dynamic testing. Discs for static testing came from cylinders 1 and
3 and measured approximately 2.5 cm in diameter by 0.25 cm thick.
Discs for dynamic testing were taken from all four cylinders and
measured roughly 5 cm in diameter by 0.3 cm thick. All discs appeared
quite uniform and a random check of density showed little variation
between cylinder and the discs used in static testing. Some tendency
toward increased density (by 3%) of the discs prepared for dynamic
testing was noted (column 9, Table 4-1), suggesting that machining may
have introduced a thin layer of higher density (2.13 gm/cm?®) glass
chips at the surface although inspection at 100X was not conclusive.

A photomicrograph (also at 100X), showing the interior arrange-
ment of the glass spheres in the epoxy resin matrix, is given in Fig.
2-1. The dark circles with the light spot in the center represent the
spheres which were unbroken prior to sectioning, while the light circles
are initially broken spheres which filled with epoxy during mixing. In
some cases a dark circle may be found inside a light one, showing that
smaller whole spheres may lodge within larger broken ones during the
mixing process. In general, the size and spacing distribution of the
spheres appears to be random, strongly suggesting that the assumption
of statistical isotropy of the virgin material be used in the subsequent
analysis. This has been done and more recent independent measure-
ments of elastic properties at several orientations further substantiate
this assumption.

3. STATIC TESTING

For reasons which will become apparent in the next section, the static
tests were conducted using a fixture which approximated the “uniaxial
strain” condition—i.e., complete lateral constraint with deformation
limited to the direction of the maximum applied stress. Since a tri-
axial test apparatus was not available for these measurements, a far
simpler piston and cylinder device (Fig. 3-1) was used. In this device a
disc specimen (usually 0.002 cm oversize) was pressed into position at
the midlength of the cylinder and the load was then applied to the sur-
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.

Fig. 3-1. Piston and cylinder device for approximating uniaxial strain conditions.

face of the specimen through the pistons. Because of the finite stiff-
ness of the cylinder (30 X 10° psi (2 X 10" dynes/cm?) Young’s modu-
lus, with 180,000 psi (12.4 X 10° dynes/cm?) yield strength Maraging
steel —true also for the pistons), lateral constraint of the specimens
was not complete. However, it was monitored in some tests by means of
externally mounted circumferential strain gages. For most of the range
of the test variables, the strain measurement, which could be used to
estimate the circumferential strain of the specimen, was low; only at
the high loads did it become substantial. Even then it was only a frac-
tion of a percent of the axial strain.

In the early tests, a 200,000-1b (~100,000 kg) Tatnall machine was
used to apply the load. Use of such a large capacity machine was
dictated by the desire to achieve stresses well above 10 kbar (~145,000
psi) on a specimen with a cross-sectional area only slightly less than 1
in.2. It was during these tests that the external circumferential strain
measurements were made. Later a more conveniently located 120,000-
Ib (~60,000 kg) Tinius Olsen machine became available. Although a
lower capacity machine, it nevertheless proved satisfactory for the load
range of interest which was better specified by then (<10 kbars). No
circumferential strain measurements were made in this series.

Length change in the direction of maximum stress was measured by
means of the deflectometer shown in Fig. 3-1. Care was taken to ac-
count for both test machine stretch and deflectometer hysteresis by
subtracting from the load-deflection curve obtained for a specimen the
“pistons only” characteristic of the system. This characteristic was
found to be quite repeatable so that after a few trial runs, a representa-
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Fig. 3-2. Static axial stress-axial strain curve for syntactic foam. Cross hatching indi-
cates experimental scatter.

tive trace was used for correcting all subsequent specimen load-deflec-
tion curves reaching a similar load.

At lower loads tilting of the loading heads gave rise to erroncous
deflectometer readings. This difficulty was overcome by averaging two
deflectometer readings, one taken at the front of the machine and the
other taken 180° opposite. Thus, two specimens were expended for a
single “averaged” curve. Each individual trace was repeatable, thereby
demonstrating the small variability from specimen to specimen.

The final product of the data reduction described here is shown in
Fig. 3-2, where axial stress —o, (load = original area, since the cylinder
prevented changes of more than 0.4%) is plotted against axial strain —e,
(length change =+ original length). Estimates of specimen circumferen-
tial strain have been made * and found to be of order 0.2% at an axial
t this stress level is about 40%, the
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condition of uniaxial strain is well approximated for syntactic foam us-
ing the piston and cylinder device. Figure 3-2 is a composite of curves
obtained for four specimens, with the scatter band indicated by the
cross hatching.

The crushing characteristic of the syntactic foam is quite apparent.
Up to a stress of almost 1 kbar, the foam behaves linearly and re-
versibly; then with almost no increase in stress a dramatic reduction in
volume (as measured by the axial strain) develops due to the breaking
of the hollow glass spheres. As the resin flows into the now unsup-
ported voids a volume reduction of about % is observed. However, once
the voids are filled, the foam “locks up” and behaves almost like pure
epoxy. Figure 3-3 is a photomicrograph of such a specimen which has
undergone an irreversible uniaxial strain change of about 30%. 1t is
seen that with the exception of glass chips and a few oblong voids (with
their short dimension in the direction of load), the specimen is com-
posed almost entirely of epoxy resin (white). Inspection of Fig. 3-2
shows that the unloading curve is also quite nonlinear, with the modu-
lus larger than that of the virgin composite. This behavior is to be ex-
pected since the original material has less volume % resin to resist the
load.

Excellent agreement can be shown between the measured values of
specimen density and those predicted using a void volume fraction of
1 The prediction can be made from the law of mixtures:

p=ap.+ Bp, (3-1)

where a and B are the void and resin volume fractions (3 and %, re-
spectively) and p, and p, are void and resin densities. Void density is
due almost completely to the glass sphere

4mr?h

3

Pr = Pa = 3(hin)py (3-2)
where 4 and r are the thickness and radius of the sphere. The value of
hir = 3% has been reported in reference [2] and will be used here to-
gether with densities of 2.13 gm/cm?* for glass and 1.16 gm/cm?® for
resin. Substitution of these values into (3-2) and (3-1) leads to a p=
0.858 gm/cm?, which is within 3% of any of the measured densities
listed in Table 2-1. However, some discrepancy is noted between the
weight fractions calculated using these figures— 10 wt. % for the glass
and 90 wt. % for the resin—and those reported in the Material Prep-
aration Section; therefore, additional measurements are required be-
fore the volume fractions proposed here can be accepted with con-
fidence.

Shown in dotted lines near the origin of Fig. 3-2 is the dynamic
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modulus given for cylinder 1 in Table 2-1. It is indistinguishable from
the slope of the static curve, and more careful calculations indicate
that it differs from the static value by at most a few percent. Hence,
there is additional reason to believe that conditions of uniaxial strain
are closely met.

4. DYNAMIC TESTING

The LMSC light gas gun was used to obtain impact stress — particle
velocity data tor svntactic foam. The gun is based on the Sandia (6.37
cm) design. A schematic of the LMSC setup is shown in Fig. 4-1.
Interest in this behavior is due to the facts that measurements are now
relatively straightforward and certain correlations may be made with
static data. These correlations will be carried out in the next section.

For use in the present study, the gun was operated in the specimen-
in-piston mode; i.e., the foam disc was mounted on the front of the 5-
c¢m diameter aluminum piston to impact on an X-cut quartz pressure
transducer. The transducer, developed at Sandia [5], was located at the
muzzle end of the 7.5 meter long gun; current output from the trans-
ducer was displayed on a Hewlett-Packard 175A oscilloscope. Impact
stress was obtained by first determining the trace current ¢, by scaling
with a calibration current made prior to each shot and then by using
the formulas [5]

—o; = (400/m)(G/KU ) (4-1a)
where the pressure coeflicient G depends linearly on i,
G = (L/D)i, (4-1b)

and the current coefhicient K and the quartz shock velocity Uy, are
nearly constant but exhibit a weak G-dependence

K= 1.9853 + 0.0014661G — 0.0000011657G* (4-1¢)

U= {573.85 — 0.0085136G, 0=G=2455
sq

555.56 — 0.065957G,  +245.5 < G. (4-1d)

In (4-la-d), —o; is measured in kbars, G in ma/cm, i, in ma, K in 107"
coulomb/cm® kbar and Uy, in cnymsec. L and D are the quartz trans-
ducer thickness and active electrode diameters in ¢cm (0.637 cm and
1.275 cm, respectively).

Transducer mechanical impedance has been given by Sandia [6].
from particle velocity at the surface of the quartz 1s found by the re-
Jation

g = 10"0)/p,Us, (4-2)
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where p, is the initial density of the quartz (2.65 gm/cm?®), —a; is given

in kbar and ug-and Uy, are given in cm/msec. Particle velocity in the

syntactic foam is then found from the velocity continuity condition
uy=V-—-u, (4-3)

where V is the velocity of the piston-plus-foam flyer just prior to im-
pact. This velocity is an average of two velocities obtained from two
measured transit times between three equispaced (0.305-cm separa-
tion) shorting pins located next to the muzzle (see Fig. 4-1). Since im-
pact stress is the same for both quartz and foam, (4-1-4-3) are suffi-
cient for the calculation of the pressure-particle velocity behavior of
the syntactic foam. Table 4-1 provides supplementary as well as specific
data for the —o; vs u; curve shown in Fig. 4-2. Experimental points are
shown in circles, and a light line has been drawn through them to guide
the eye. The basis for the solid line is described in the next section.
Also included in Fig. 4-2 are oscilloscope traces of transducer output at
low, intermediate and high impact stresses. Differences in the shapes of
these traces will be discussed later.

5. ANALYSIS

A comparison of the static and dynamic behavior of syntactic foam
as exhibited in Figs. 3-2 and 4-2 is not possible without some further
information about the constitutive relation for the foam. One of the
simplest forms for this relation assumes that the material making up
the foam is rate insensitive; i.e., that the only significant variables
entering into this relation are axial stress and axial strain (for uniaxial
strain conditions).

Because of its simplicity, a rate-insensitive form based on Fig. 3-2 is
adopted here with the view that validity of the assumption can be
tested by comparison between predicted and measured impact stress-
particle velocity curves. As shown in App. B, when the uniaxial strain
constitutive relation during loading has the general monotonic form
shown in Fig. 5-1, then an expression for impact particle velocity can
be obtained in closed form. Subdivided by impact stress level into three
regimes (dispersive wave, dispersive wave preceding a shock wave, and
single shock wave), it reads

r1 [~oi dp
- — 0 =o;=p*
poJo  g(p) 7 ’
W=, 4 [ﬂﬁ m] [1_—,7(—_0.)]‘ pr<oi<p (-lag
P g-o) — (0 < -0, < p%
=
el - [)Jr = —0;.
LY Po a1
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Fig. 4-2. Impact pressure-particle velocity behavior of syntactic foam.

The variables are compressive stress —o and strain measure 7 (cf.
—o, and —¢, in Fig. 3-2); density p (subscript “0” denotes initial value),
related to m by

n=1—plp (5-2)
and the characteristic shift rate g
g = Vp'po (5-3)

where p(n) is the functional form of the curve in Fig. 5-1. Because of
the monotonicity of p(n), one may invert and express n as a function
of p (or —o); hence, the shift rate in this analysis is regarded as de-
pendent on compressive stress. Equation (5-1b) appears to depend on
both —¢; and —o;, (note that u, is given in terms of —o, from (5-1a) by
replacing subscript 7 by 1); however, —o, is fixed by the use of the
Rankine-Hugoniot equation for mass conservation across a shock

wave:

| —n(a) _ 1 —n(-o)
{0 W (—oy) — u,

(5-4)

o;, iteration between (5-1b) and
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Fig. 5-1. Model of constitutive relation for syntactic foam. (Light line refers to eqs.
5.1, b').

The locations of p* and p* can be established by use of Fig. 5-1 and
(5-1b—¢), respectively. Up to a stress of p*, a compressive pulse will
tend to disperse as it propagates into the foam because the higher
stresses travel with slower shift rates than the lower ones (see
(5-3)). The reverse is true above p* and a shock wave forms. As a re-
sult, the conditions ahead of and behind the shock are denoted by
subscripts 1 and 2. p* 1s therefore located by the minimum shift rate
or where p"(n) = 0; i.e., the inflection point in Fig. 5-1. The location
of p* is determined by cquating (5-1b) to (5-1¢), with —o, = u, =
n(—o) =0 and g(—o) = VMy/py = gy, where M, is the initial tangent
modulus and g, is the initial elastic velocity. Then (5-1b) and (5-1¢)
combine to b

m = Po('uz

Since n(p*) ~ 0(1), extremely high impact stresses are necessary to
produce a single shock wave because of the usually large initial tangent
modulus. Reference o Fig. 3-2 shows that —o; < p* for the calcula-
tions of interest here and so (5-1¢) will not be used.

Some simplification in (5-la-b) results when the —~o vs n curve is
linear up to p* (sec light line in Fig. 5-1). These equations are replaced

= M, (5-5)

— 0

o8o

_!_).I_ =+ \/:O:_';/L [n(_(ri) - ,r’:;’:]’ ﬁ:}: < —0; = p4 (5_121’_1)’)
Poso Po
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where (5-2) and (5-4) have been used in eliminating g from (5-1b) and
n* = n(p*). In this form the equations can be used with the —o vs 7
curve exclusively to predict the impact stress-particle velocity relation
for the material. Data from Fig. 3-2 have been used in this way with
p* = 0.9 kbar and n* = 0.0155. The predicted curve is shown as the
heavy solid line in Fig. 4-2. With the exception of the lower stress range
the agreement with experimental data is quite good.

6. DISCUSSION AND CONCLUSIONS

Figure 4-2 provides a test of the hypothesis that syntactic foam is
rate insensitive and that the static uniaxial strain stress-strain curve
(Fig. 3-2) actually represents the general constitutive relation. Dis-
agreement between the experimental data and the predicted behavior
is greatest at low stresses (0(1 kbar)) where experimental stresses are
about double those predicted analytically. The discrepancy decreases
at the higher stress levels and virtually disappears at and beyond 7
kbar. This range of disagreement would extend somewhat further (to
about 9 kbar) were the transient current readings rather than the
plateau values used in the intermediate stress range. (The transient
reading is defined as the initial overshoot seen in the center trace
shown in Fig. 4-2; the plateau is the flat part of the trace following the
overshoot.) The transient reading was discarded because it occurred
in a time during which heterogeneity effects may be important. To as-
sure a statistically homogeneous response, several “zones of hetero-
geneity” should be exposed to the stress wave. Taking the average
diameter of a hollow sphere 2r as the dimension of a single such zone
and the shift rate g at the stress level of interest wave speed, we arrive
at a homogeneous state buildup time of

At = n(2r)/g (6-1)

where n represents the number of zones exposed. For stresses just
slightly above p*, the shift rate g is considerably smaller than g,, the
elastic value (g, is approximately 0.26 cm/usec, per Table 2-1). For
a value of g=0.1 cm/usec, 2r=10"% cm and n=3, (6-1) gives a
buildup time of At= 0.3 usec. Examination of the center trace in Fig.
4-2 shows that the transient is completed in approximately 0.4 sec
(scale is 0.4 usec/cm). As the stresses increase well above p*, g increases
toward g, (and beyond when the single shock wave develops) and the
buildup time is correspondingly reduced.

A second effect—misalignment of specimen and transducer at im-
pact=maysmasksthestransientyreading at low impact velocities because
of the finite rise time associated with establishment of contact between
specimen and gage from one edge to the other. If vy is the angle of
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misalignment, then the rise time is given by
T=Dy/V (6-2)

where D is the active diameter of the gage. At a flver velocity of 10
cm/msec, the rise time is 7= 0.2 sec for an active gage diameter of D =
1.275 ¢m and a misalignment angle of vy = 5". As the flyer velocity in-
creases, the misalignment effect ceases to be important: however. the
much more gradual rise of the lower trace in Fig. 4-2 is quite apparent
and is verv probablyv due to this effect.

The nfluence of specimen heterogeneity and misalignment on the
tracings have not been offered to explain the discrepancy between the
curves in Fig. 4-2. Rather, it 1s believed that this difference can onlv
be due to a rate or other material effect which must be included in the
constitutive relation. Even in some of the static tests a small “delaved
vield” type of behavior was observed at the knee of the stress-strain
curve.

Because of the greater discrepancy at lower stress levels, a rate-de-
pendent constitutive relation of the Malvern type mayv prove useful.
Incorporation of such a relation in a further analvsis will provide im-
proved prediction capabilitv: in  additon further stress-particle
velocity data near p* will assist in filling out the curve in this important
regime. Together the combined analvtical-experimental approach
makes a powertful tool in the study of dynamic behavior of materials.
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APPENDIX A. ESTIMATE OF SPECIMEN
CIRCUMFERENTIAL STRAIN

Desired is an estimate of the midlength circumferential strain at the
inner radius of a thick-walled cylinder subjected to a localized internal
pressure. The pressure is applied to a narrow band centered at the
midlength of the cylinder and represents the surface load exerted by
the disc specimen due to lateral expansion. Because of continuity of
displacement between the disc specimen and the cylinder at the wall,
cylinder strain at that point will equal the disc specimen strain. Avail-
able is a measurement of the midlength circumferential strain at the
outer radius. The boundary value problem described here is sketched
in Fig. A-1. A

No published closed-form solutions for this problem have been
found; however, solutions to related problems are available giving
strain formulas which are believed to bracket the actual behavior.
When the internal pressure p; is uniformly distributed over the length
2¢, the results of Tranter [7] can be used to obtain a lower bound on
the ratio e€y(b)/€s(a). In this reference, expressions are derived for

== €g)

Fig. A-1. Analytical model for circumferential strain estimate.
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stresses and displacements in an infinite medium surrounding a hole
which is subjected to localized pressure. Pertinent to the problem here
is the formula for the circumferential strain €4(r, 0) in a plane perpen-
dicular to the axis of the hole and containing the center of the pres-
sure band:

€(r, 0) = — gl—;—"-) bia J: [aKo(a)Kl (% oc)

E
c
sin — « da
r y o ¥ Sty de N
- oK, <Z 01) K (a) — 2(1 — v)K,(a)K, ((1 a)] oD (A-1a)
where
D(a) = [ + 2(1 = »)IK,*(@) — @’Ky¥(a) (A-1b)

and the K;'s are modified Bessel functions of the second kind of order
i. E and v are Young’s modulus and Poisson’s ratio for the medium and
other dimensional variables are defined through Fig. A-1. The
presence of the medium outside the radius » = b acts to limit the radial
displacement and thus the radial strain; hence the ratio

G"(b’o)—f{f Ko(@k, (2 )K Y2 k
o, 0) = . [a o()K, <(1 (o4 0 (a a) (@)
siniada e s singa
) a

-0, 1)) o) 50 )

is regarded as a lower bound to €y(b)/es(a).

Computations on (A-2) were carried out for the parameter values
v =0.3, ¢/a= 0.07 (approximately the thickness to diameter ratio of
the compressed disc) and b/a = 2, 3,4 and 5. At b/a = 4, corresponding
to the radius ratio of the cylinder used in the experiments,

[Ee(b)

€4(a)

} =0.0119. (A-3)
L.B.

For the other extreme the Lamé formulas for internally pressurized
thick-walled cylinders were used with the idea that axial as well as ex-
ternal constraint beyond r = b has been removed. From [7] it is easily
found that

ef(r) = % [—(1 + v) 7—42 + 2C(1 — V)] (A-4a)

where

—4 = B2(20) = b a2pi/ (> — a?)]. (A-4b, ¢)
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The ratio
Go(b) 2 -
== A-
@ AT b+ ) (A-5)
gives an upper bound of
[E"(b)] =0.0931 (A-6)
€s(a) Ju.p.

when the same parameters are inserted in (A-5) as in (A-2).

Inspection of (A-3) and (A-6) shows that while the bounds are not
exactly narrow, a reasonable order of magnitude estimate for €y(a) in
terms of €y(b) is

Eg(d) ~ 20€g(b) (A-7)

This figure, coupled with the recorded value of about 107* for €(b)
at a stress level of 10 kbar, yields on estimate of

€la) ~ 2 X 1073 (A-8)

for the maximum circumferential strain.* Since the corresponding
axial strain is 4 X 107!, or 200 times as large, a uniaxial strain condition
is apparently very nearly achieved through the test.

APPENDIX B. WAVE PROPAGATION ANALYSIS

The analysis presented herein is an elaboration of the derivation
given in [1] and is included to make the paper self-contained. At-
tention is limited to one-dimensional wave propagation in a homo-
geneous isotropic medium. Motion perpendicular to the direction of
wave propagation is prevented (the “uniaxial strain” condition). The
equation of motion (conservation of momentum) is given by

e (B-1)
where o is the normal stress acting in the direction of wave propaga-
tion and positive in tension, u is the particle velocity, a is the Lagrangian
spatial coordinate, ¢ is time, and p, is the initial material density. The
Eulerian coordinate x(a, t) may be found from the definition of particle
velocity

_Ox
ot
*This figure suggests the possibility of a small amount of plastic flow in the zone of
contact between disc and cylinder. Repeated visual inspections and micrometer measure-

ments showed no dimensional change in the interior so that (A-7) may well be an over-
estimate of the internal circumferential strain.

u

(B-2)
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From conservation of mass, one has

py_x
p da

U= (B-3)
where v is the specific volume ratio and p is the instantaneous density.
Equations (B-2) and (B-3) mav now be combined to read
Jdv _ du
T = B-4
at da ( )
To (B-1) and (B-4) for the unknowns . v and v must be added a
third expression to complete the mathematical description. This ex-
pression is the constitutive relation p(7) shown graphically in Fig. 5-1
(recall m = 1 — v from (5-2)).
The specific volume ratio may be eliminated by writing

Jdo .

an , ov , 0v
ar

— = p'(m) — = pg® — (B-5)
at

b (T]) at dt

where g = Vp'(m)/p, is referred to in [1] as the characteristic shift

S

rate. Combination of (B-4) and (B-3) vields

do , du .
— = pyg® — B-6
dt Pos da ( )
Equations (B-1) and (B-6) constitute the governing equations for the
unknown o = —p and u (g is regarded as a function of p; p,).
It is convenient to transform (B-1) and (B-6) to characteristic co-
ordinates described by

da = *g di. (B-7)
In this new coordinate system they become
—dp = Fpyg du. (B-8)

Prior to the formation of shock waves (i.e..,—o = p*), use of the char-
acteristics as coordinates is particularly attractive since integration may
be carried out directly. For example, following impact a simple cen-
tered wave develops. Near the origin in t-a space the characteristics and
stress profile have the appearance shown in Fig. B-1.

The relation between impact stress and particle velocity is obtained
by integrating (B-8) along the negative characteristic (minus sign) from
the undisturbed region below da, = +g, dt to the impacted interface.
This integral may be written as

_ifﬂr'jf_ (B-9)
Ui—Po 0 %T(l)) )
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-0 = -0(a,t")

Fig. B-1. Characteristic network and stress profile for impact stresses below p*.

since —o- = u = 0 in the undisturbed region (subscript ¢ denotes inter-
face value). For stresses in excess of p* a shock wave will form and fol-
low the dispersive precursor described by (B-9). In this case, Fig. B-1
should be replaced by Fig. B-2.

Conditions below da, = +g, di(0 < —o < p*) are already described by
(B-1-B-9); to relate variables across the shock front (state 1 to state 7),
the Rankine-Hugoniot equations for mass and momentum conserva-
tion across the shock are used:

pi(cs — w;) = pylcs — uy) (B-10)
—o; + oy = piles — ug)(u; — uy). (B-11)
All variables except ¢, the shock velocity, have been defined pre-

viously. For the shock front to remain stable (i.e., neither overtake nor
fall behind the dispersive precursor) its velocity must be identical to the

Shock
fron
= + d
o da1 g1 t
= - da =+ g dt
| | o
T da = - gdt
| - g =0
| o
[}
- 0 =< p*
1 p
-0,
- *
o, =p

-0 = -o(a,t")

Fig: B=2. Characteristic network; shock fiont and stress profile for impact stresses
above p* (and less than p+).
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shift rate associated with the conditions just preceding the shock

¢ = g(—0) (B-12)

Use of (B-10-B-12) and (5-2) enables one to arrive at (5-la—c).

Above p~, (B-10) and (B-11) are simplified by setting «, and o, equal
to zero and (B-12) no longer applies. Shock velocity may be eliminated
between the two and once again (5-2) is used to arrive at (5-1c).
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ABSTRACT

The influence of confining pressure, pore-fluid pressure, temperature, and rate of
loading on the strength and ductility of rocks is reviewed in this paper. Effects of pres-
sure and temperature on the mechanical behavior of a large variety of rock types have
been studied by means of triaxial compression tests, and indentation experiments have
been used to evaluate the influence of loading rates at ambient temperature and pres-
sure. Data relating the combined effects of all of these variables over a wide range of
values are not available; therefore. the effects of independent variations of pressure,
temperature, and loading rate are considered in detail and interactions between these
parameters are evaluated under limited conditions.

INTRODUCTION

The dependence of the mechanical behavior of rocks on pressure
and temperature has been studied extensively by geologists and geo-
physicists, and the effect of loading rate has been evaluated by mining
and petroleum engineers. Pressures as great as 300,000 psi and tem-
peratures to 1500° F in conjunction with extremely low rates of loading
are of interest in the geological studies. Laboratory experiments have
been conducted to approximate conditions in the earth’s crust to
depths of 20 km for studies of faulting and folding. In mining and
petroleum engineering problems pressures and temperatures rarely
exceed 20,000 psi and 300° F, respectively; however, dynamic loading
is an important consideration in blasting and percussive drilling.

An abundance of data have been published relating rock properties
to the effects of pressure and temperature at low strain rates and to

388



The Mechanical Properties of Rocks 389

the cffect of loading rates at atmospheric conditions. However, rela-
tively few experiments have been performed in which pressure, tem-
perature, and loading rate have been varied simultaneously over a
large range of values of each of these variables. The purpose of this
paper is to review the current state of knowledge of rock mechanics as
related to the influence of pressure, temperature, and loading rate on
the mechanical behavior of rock. Strength and ductility, the two me-
chanical properties of most interest, will be the primary concern in this
survey. Other properties frequently evaluated are density, static and
dynamic elastic constants, hardness, porosity, and fluid permeability.

EFFECTS OF CONFINING PRESSURE

An interest in the behavior of rock at great depth in the carth led
carly investigators to study the dependence of ductility on pressure.
Adams and Nicolson [1] evaluated the ductility of rocks as a function
of confining pressure as carly as 1901. Later in 1911, von Karman [2]
observed that a jacketed sample of marble confined in a high Huid-
pressure environment could {low without fracturing. This testing pro-
cedure, known as the “triaxial test,” has been the basis for many experi-
ments by other investigators.

Typical stress-strain curves for the triaxial compression of rocks are
illustrated in Fig. 1. Generally, the strength and ductility of rocks in-
crease simultancously as the confining pressure is increased. Differ-
ential axial stress, defined as the axial stress in excess of the confining
fluid pressure, is plotted as a function of percent axial strain for the
triaxial stress-strain curves.

The change in mode of failure with increasing confining pressure is
also illustrated in Fig. 1. At atmospheric pressure, uniaxial compres-

STRESS

Fig. 1. ‘Lypical triaxial compression stress=strain curves for rocks and corrvesponding
modes of failure (after Griggs and Hardin [3).
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Fig. 2. Illustration of Mohr theory of failure of rocks.

sion normally results in axial tensile fractures. As the confining pres-
sure is increased, the failure mode changes from brittle fracture to
ductile flow. The stress-strain curve at an intermediate confining pres-
sure indicates that the stress reaches a maximum value and then de-
creases for larger values of axial strain. Although the sample is partially
fractured, the confining pressure acting on the jacket holds the frac-
tured portions together and friction between the fractured surface
continues to support an axial load. At higher confining pressures the
samples deform without loss of cohesion. Griggs and Handin [3] have
given a detailed discussion of the failure modes that are observed in
triaxial tests.

Rock strength as a function of mean stress can be represented by
Mohr circles as shown in Fig. 2. A nonlinear envelope can usually be
fitted to these circles. The Mohr theory of failure predicts that fracture
or flow will occur on a plane represented by the point of tangency of

44 000 PSI

(o3 psi1)

STRESS

0 - ) 8 ) ‘.‘2
STRAIN (PERCENT)

Fig. 3. Influence of confining pressure on strength of dry Solenhofen limestone at
room temperature (after Heard [4]).
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the envelope to a particular Mohr circle. The actual fracture direction
does agree fairly well with the prediction of the Mohr theory in some
cases [4].

The results of a comprehensive study of the ductility of Solenhofen
limestone have been reported by Heard [4]. This limestone has a small
grain size, is homogeneous and isotropic to a high degree, and is also
chemically stable within a wide range of temperatures and pressures.
Data for dry samples at room temperature and a strain rate of approxi-
mately 2 X 107" in./in. per second are given in Fig. 3. It can be seen that
thesc results are similar to the idealized curves shown in Fig. 1. Experi-
mental results for a number of different rock types have been pub-
lished by Griggs, et al. [5] and Handin, et al. [6]; their data illustrate
that both strength and ductility increase with pressure.

EFFECTS OF PORE FLUID

Interstitial fluid can exert a mechanical effect on rock due to the
pore pressure as well as chemical effects related to the chemical nature
of the fluid and the rock. Figure 4 shows data by Robinson [7] for
water-saturated Indiana limestone at constant confining pressure and
decreasing pore pressure. As the pore-fluid pressure decreases, the
strength and ductility increase. Handin, et al. [6] have shown that the
stress-strain curves nearly coincide when both the confining pressure
and the pore pressure are varied simultaneously so as to maintain a
constant differential pressure. It can therefore be concluded that the
effective stress concept of soil mechanics also applies to rocks. For ex-
ample, a compression test conducted at 10,000 psi confining pressure

o 0
(%)
& 20t
A7)
> 5000
(/2]
(2] IO"‘
w
o 8000
[
/2]
10,000 PSI PORE PRESS.
O i 1
0] | 2

STRAIN (PERCENT)

Fig. 4. Effect of pore pressure on behavior of Indiana limestone at a constant confining
pressure of 10,000 psi (after Robinson [7]).
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and 5000 psi pore pressure should give quantitatively the same result
as a compression test on an identical sample of rock at 5000 psi con-
fining pressure and atmospheric pore pressure.

Boozer, et al. [8] have shown that some fluids are not chemically in-
ert when in contact with certain rock types. For example, the ductile
flow of Indiana limestone is a thermally activated process in which the
activation energy is proportional to the free surface energy. Its
strength is reduced by adsorption resulting from ionic bonding on
calcite surfaces because the adsorption causes a reduction of free sur-
face energy. These authors based their selection of interstitial fluids
for experiments on sandstone on the results of preliminary tests which
showed that the tensile strength of quartz glass rods was lowered
nearly 50 percent when the rods were immersed in water rather than
in n-hexadecane. Oleic acids produced an effect intermediate between
that of water and n-hexadecane. Hardness measurements on calcite
crystals immersed in the above fluids were used to obtain preliminary
data for experiments on limestone. The crystal hardness was found to
be much lower in oleic acid and saturated calcium carbonate water solu-
tion than in n-hexadecane. However, as shown in Fig. 5, the strength of
Indiana limestone was not decreased appreciably in the presence of
these fluids, although the mode of failure of the sample saturated with
oleic acid apparently changed.

EFFECTS OF TEMPERATURE

The combined effects of temperature and pressure on the strength
and ductility of Solenhofen limestone are indicated by the data of
Heard [4] shown in Fig. 6. At a constant confining pressure of 44,000
psi an increase in temperature from 68° F to 750° F decreases the ulti-

—20¢%
a n- HEXADECANE
m 15
o
e WATER
o 'Ot
w
w
e 5} OLEIC ACID
-
w
0
0 5 10 15

STRAIN (PERCENT)

FEig. 5. Effect-of various-interstitial-fluids-on;the behavior of Indiana limestone at 5000
psi confining pressure, room temperature and 0.07% sec strain rate (after Boozer, et.

al. [8]).
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Fig. 6. Eflcct of temperature on the strength of dry Solenhofen limestone at various
confining pressures (after Heard [4]).

mate strength by about 30%. A further increase of temperature to
1100° F causes an additional reduction in strength to about one-third
of that mecasured at room temperature. For temperatures and pres-
sures at which ductile failure occurs, a temperature change of a few
hundred degrees has a much greater influence on strength than a con-
fining pressure change of several thousand psi. For Solenhofen lime-
stone the transition from brittle to ductile behavior occurs at a pres-
sure of 15,000 psi for tests at room temperature and at a temperature
of about 900° F for tests conducted at atmospheric pressure. Similar
results have been obtained by Griggs, et al. [6] and Handin, et al. [6] for
a variety of rock types.

EFFECTS OF RATE OF LOAD APPLICATION

The strain-rate sensitivity of rocks has been demonstrated by Robert-
son [9] in creep tests. Most of the experiments involving combined
variations of rate of load application, temperature, and pressure have
been conducted over a range of low loading rates. Indentation tests have
been made under both static and dynamic conditions, primarily at
ambient pressure and temperature. A few impact tests have been per-
formed on rock subjected to pressure, but these were done at room
temperature. Impact experiments will be discussed in a subsequent
section.

Boozer, et al. [8] varied strain rates from 0.06 to 13 percent per
second in their studies of the effects of fluid composition on rock
properties. Strain rates were varied from 4 X 1073 to 80 percent per
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Fig. 7. Strain-rate effects for mineral-oil saturated Solenhofen limestone at 20,000
psi confining pressure and room temperature (after Serdengecti and Boozer [10]).

second while confining pressure and temperature ranged to 20,000
psi and 300° F, respectively, in results reported by Serdengecti and
Boozer [10]. The above investigations of the interrelationships be-
tween these variables, although somewhat limited in variations of
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pressure and particularly temperature, represent about the only such
data available.

The effect of strain rate is illustrated in Fig. 7 for oil-saturated
Solenhofen limestone at 20,000 psi and room temperature. The rock
strength increases as the strain rate is increased from 2 X 107 to 60
percent per second. A similar effect of strain rate as well as the effect
of confining pressure can be seen for Palo gabbro in the data shown in
Fig. 8. While these data do not illustrate the influence of strain rate on
ductility, other tests by these investigators show that as the strain rate is
increased the failure becomes more brittle for constant temperature
and confining pressure.

MECHANICAL EQUATION OF STATE

An equivalent effect of strain rate and temperature on the strength
of Solenhofen limestone was observed by Serdengecti and Boozer [10].
This equivalence is similar to the effect reported by Zener and Holo-
mon [11] for metals. In the range of strain rates from 107 to 100 per-
cent and temperatures from 78° F to 300° F, they found that the
equivalence relation is of the form

o = (e = ¢

where o, = ultimate strength
€ = strain rate
Q = heat of activation
R = universal gas constant
T = absolute temperature
& = equivalence parameter
r = function of stress state

From experimental data, the heat of activation is found to be 24,800
calories per gram-mole and the exponent, r, is approximately propor-
tional to the confining pressure. At 5000 psi confining pressure, a
value of 0.0046 is reported for r, while at 20,000 psi, the value is
0.0087. In the above relation a decrease in temperature from 300° F
to 78°F is equivalent to increasing the strain rate by a factor of
about 10°.

Using the equivalence parameter relating strain rate to tempera-
ture effects and experimental data at confining pressures of 5000 to
20,000 psi, Sergendecti and Boozer derive the following mechanical
equation of state:

o, = Ko{ e“’”"l“o}g"

po = reference confining pressure
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Ap = (p — po) difference between actual confining
pressure and reference pressure

Ap
kspo

ki, ks = material properties.

r=17ryt+

Assigning the reference state as 5000 psi, they found the data to fit an
equation of the following form:

]Ogl() Oy, = loglo Ko + 7o loglo f
for values of

log,y Ko = 4.664 and r, = 0.0046.

From experiments at 20,000 psi they also evaluated the material con-
stants to be k, = 40 and k&, = 725. Using these values, the equation of
state predicts values of ultimate strength o, which are in good agree-
ment with experimental results obtained at confining pressures of
10,000 and 15,000 psi. In addition to strength as a function of the
equivalence parameter, &, as represented by the solid lines in Fig. 9,
modes of failure can be assigned to regions on the graph as shown by
the dashed lines.

The effects on the ultimate strength of Berea sandstone and Pala
gabbro in the temperature range below 300° F are small; thus, the
equivalence parameter is primarily a function of strain rate for these
rocks. Ultimate strength data at 10,000 psi confining pressure plots as
a straight line on a graph of o, versus log ¢. Although the ultimate
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Fig. 9. Mechanical equation of state for Solenhofen limestone. Dashed lines indicate
regions of graph representing points where brittle, transitional or ductile failure occurs
(after Serdengecti and Boozer [10]).
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Fig. 10. Stength of Indiana limestone as a function of the logarithm of the strain-
rate temperature equivalence parameter (after Boozer, et. al. [8)]).

strength is approximately independent of temperature for these two
rock types in the temperature range studied, the mode of failure does
depend on temperature. Caution should therefore be observed in ap-
plying the equivalence concept to rocks in general.

The strength of Indiana limestone as a function of confining pres-
sure, saturation fluid, and equivalence parameter are shown in Fig. 10
from data of Boozer, et al. [8]. The pore pressure was maintained at
atmospheric in these tests; temperatures were varied from 78° F to
300° F and strain rates from 107 to 13 percent per second. Strength
is a linear functon of the equivalence parameter on the semi-loga-
rithmic plot for each combination of confining pressure and saturation
fluid.

RESULTS OF IMPACT TESTS

Maurer [12] reports that the energy per unit volume of crater is con-
stant for impact of spherical bullets into sandstone and granite at ve-
locities from 10 to 8000 ft/sec. He also found that crater volume is
proportional to energy of impact and inversely proportional to the rock
strength squared in this range of impact velocities:

4‘ —_—
Ve« “—)E”
ot
where V. = crater volume

L. = total encrgy

E, = threshold energy

o, = ulumate compressive strength of rock.
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In addition, the volume is proportional to the square of the depth of
the crater. Experiments reported by Vanzant [13] also showed that
crater depth and volume are constant at constant impact energy for
marble, although the bullet mass was varied with velocities ranging
from static to 2000 ft/sec.

Pavlova and Shriner [14] studied the effect of rate of loading on the
plastic deformation of marble under a circular die. A 10 mm diameter
die was struck by a pneumatic drop hammer at velocities ranging from
static to about 160 ft/sec. The plastically deformed zone was detected
by means of gamma radiation. Translation gliding in calcite crystals is
not visible; however, when an irradiated sample is deformed the glid-
ing causes a visible color change [15]. A plastic zone that decreased in
size with increased velocity of impact was observed. The dynamically
deformed samples had a denser color, apparently caused by greater
distortion of the crystal lattice at higher velocities.

Slow and rapid loading tests have been compared by Maurer [16] for
blunt wedges forced into Indiana limestone under confining pressure.
In his “static” tests craters were formed in 0.1 to 5 seconds, while in the
rapid loading tests craters were formed in 0.001 to 0.005 seconds.
Drilling mud acting on the horizontal rock surface provided a mem-
brane with a low fluid permeability in the form of a filter cake. Force-
displacement curves for both loading rates are similar and of the same
form as the dynamic loading curves shown in Fig. 11; however, the
threshold force required to cause cratering is greater for rapid loading
at a given differential pressure. Results of other tests in which water
was the confining fluid are shown in Fig. 11. In this case the pore pres-

(103 Le)

FORCE

TOOTH PENETRATION (IN.)

FigsnlloForcespenetrationscurvessforsstatic and dynamic loading of water-saturated
Indiana limestone confined in water (equal pore pressure and confining pressure)—
loaded by 45° wedge with Ya2 X Y/inch flat apex (after Maurer [16]).



The Mechanical Properties of Rocks 399

sure is equal to the confining pressure. At low rates of loading all tests
from atmospheric pressure to 5000 psi yield approximately the same
force-displacement curve. With increased rate of crater formation,
however, the water does not have sufhicient time to flow into the frac-
tures. This time delay allows a differential pressure to act on the chip
during its formation, and conditions are therefore much the same as
in the tests with drilling mud. Brittle fractures were produced at all
pressures during the static tests with water, whereas a brittle to ductile
transition occurs during the dynamic tests at a pressure between 250
and 300 psi. In the drilling mud tests, brittle to ductile transition also
occurs at 250 to 500 psi for dynamic loading, but the transition takes
place at 1250 to 1500 psi mud pressure with static loading. It should be
emphasized that these phenomena are mechanical effects of the inert
fluid and are not inherent properties of the constitution of the rock.

CONCLUDING REMARKS

The mechanical behavior of rock is influenced by the confining
pressure, the pore-fluid pressure, the temperature, and the rate of
load application. Triaxial test data indicate that both strength and
ductility of rocks are increased as the effective confining pressure is
increased. At a given confining pressure, an increase of temperature
generally results in a decrease of rock strength and an increase of
ductility. Increasing strain rate has qualitatively the same effect as de-
creasing temperature; thus, rock strength is increased and ductility is
decreased as the strain rate is increased at constant pressure and tem-
perature.

A mechanical equation of state has been derived for certain varieties
of rock. This equation relates the compressive strength of a rock to the
effects of confining pressure, temperature, and strain rate. The chemi-
cal composition of the interstitial fluid can also be related to the me-
chanical behavior of various rocks.

Over a wide range of impact velocities the volume of a crater formed
in dry rock at ambient conditions has been observed to correlate with
the impact energy. The time dependency of crater formation by impact
in liquid-saturated rocks is influenced by the pressure interaction be-
tween the external confining fluid and the internal pore fluid.

Currently, most rock mechanics research efforts involve either static
or creep experiments at high pressures and temperatures or dynamic
loading of dry samples at ambient conditions. From the limited data
available, it can be concluded that dynamic loading tests at ambient
conditions-cannot-reproduce-conditions in the earth where significant
pressure and temperature variations exists.
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APPENDIX

CLOSING COMMENTS BY SESSION CHAIRMEN

Session Ib. W. PRAGER,
University of California at San Diego

As I understand it, my assignment is to comment on classical con-
tinuum theory in general, and on its relations to the papers presented
in the first session in particular, and, last but by no means least, to do
this in less than ten minutes.

The common problem at the core of these and many other papers
presented at this Symposium is the choice of a constitutive equation. This
is a problem that has intrigued me ever since the late 1920’s. If you
asked me to try to distill the experience of these forty years into a
couple of sentences, I should say that two facts appear to be important
to me in this area. Firstly, if a constitutive equation is to be useful in
the solution of practical problems, it can, at best, apply only to limited
ranges of strain, strain rate, temperature, etc. Secondly, even though a
constitutive equation is an essential ingredient of a continuum theory,
it may well contain functions that are not continuous or continuously
differentiable.

Since, from the practical point of view, there is no such thing as a
universal constitutive equation, the explicit statement of a range of
validity is an integral part of any constitutive equation. We must resist
the temptations of trying to apply a constitutive equation beyond this
range, or even of trying to derive from a constitutive equation the limits
of its range of validity. Accordingly, it seems futile to me to expect that
the constitutive equation of, say, an elastic solid should by implication
furnish a yield limit. This will always have to be stated explicitly as a
limit of its range of validity. It is, of course, not necessary for this pur-
pose directly to give the yield stress. One may instead state that yielding
sets in, say, when the work expended per unit of volume on the elastic
change of shape reaches a critical value. This was done by Hencky
[ZaMM, 4(1924).323-334]), who.showed that the yield condition of von
Mises could be derived in this manner. Dr. Reiner uses a failure cri-
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terion of a similar nature: the work expended in the change of shape is
partly stored in the elastic elements of his model, and partly dissipated
into heat in the viscous elements. Dr. Reiner assumes that failure occurs
when the first part reaches a critical value. Now, Dr. Reiner’s model
contains only elastic and viscous elements, and is therefore unable to
represent time-independent plastic effects. To incorporate these, we
may use elements with dry friction that, up to a certain limit, can sup-
port stress without deforming but slip when a critical stress is reached.
If we wanted to construct a simple failure criterion for a model of this
kind, it would perhaps be more reasonable to assume that failure oc-
curs when the work done in overcoming friction reaches a critical
value, because this work may be taken as an indication of the extent to
which the original structure of the solid has been permanently dam-
aged. I mention this alternative failure criterion not to cast doubts on
Dr. Reiner’s work but only to underscore the first point I made at the
start of these remarks. There is no universal constitutive equation, and
an assumption that may be eminently reasonable in one set of circum-
stances may be obviously wrong in others.

I believe that the papers by Drs. Bell and Dillon nicely illustrate my
second point: a continuum theory may well involve functions that are
not continuous or continuously differentiable. There may be physical
reasons for introducing discontinuities of this kind. For example, the
slip theory of Batdorf and Budiansky taught an important lesson along
these lines by showing that a simple physical model made it necessary
to abandon the conventional idea of a yield locus with continuously
turning tangent. Even though the virgin yield locus might be smooth,
strain-hardening would promptly produce vertices which would pro-
foundly affect subsequent plastic behavior.

Alternatively, discontinuities may be introduced for the sake of
mathematical convenience. If this assertion appears paradoxical to you,
let me remind you of the manner in which the use of a piecewise linear
yield locus often enables us to treat problems that could not be handled
if we insisted on a yield locus with continuously turning tangent.

Dr. Bell chooses to represent his experimental results by a polygon
rather than a curve with continuously turning tangent, not for the sake
of mathematical convenience, but because he believes that this se-
quence of straight segments (in the o*—e— plane) represents physical
reality. It seems to me that this raises important questions: what is the
physical phenomenon behind the sudden change from one value of his
deformation mode index to the next, and what causes the quantization
of this index? I must confess that these questions bother me more than
the prospect of eventually having to use this sort of piecewise linear
relationship in the solution of practical problems.
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A similar remark may be made regarding the stepwise yielding ob-
served by Dr. Dillon. Regardless of whether we are inclined to accept
this as a physical characteristic of the material or as the result of the
interaction of test specimen and testing machine, we might well explore
its use as a mathematical device. Consider, for instance, the behavior of
a work-hardening plastic beam under slowly increasing loads when the
relation between bending moment and curvature is represented by a
stairlike line. At anyv stage of the loading process, the beam mayv be
divided into a number of segments, throughout anv one of which the
curvature has the value corresponding to one of the risers of the stairs,
while at the junction of two segments the bending moment has the
value corresponding to one of the treads of the stairs. This kind of
treatment may in fact be simpler mathematically than a treatment
based on a continuously rising diagram of bending moment versus
curvature.

I have singled out two facts that appeared to me to be important in
the choice of constitutive equations for plastic solids. If vou permitted
me to add a third such fact, it would be this: contrary to what one
would be inclined to expect, thermodynamics of reversible or irreversi-
ble processes has so far failed to make a significant contribution to this
field. Arguments that appear to be of thermodynamic nature are un-
avoidable in problems that involve the interaction of stress, strain, and
temperature. On closer inspection, however, these arguments turn out
to be only quasi-thermodynamical in the sense that thev use the
vocabulary rather than the principles of thermodynamics. Dr. Drucker,
who is the next speaker, is well known for his use of quasi-thermody-
namical arguments of this kind, and I hope that he will elaborate on
my remark.

Session I1. D. C. DRUCKER,
Brown University, Providence, Rhode Island

I have known Professor Prager a long time and shall start by saying
that in essence I agree with almost all that he has said in his concluding
remarks. The only disagreement in principle is on our feeling about
the future success of the thermodynamic approach. A good deal of my
time these days is spent in thinking about thermodynamics and plastic
or inelastic behavior in general.* It makes me sad to report that my
latest hope of combining elastic and perfectly plastic elements in a
clever manner has just been deflated by one of my students, Dr. David
Rubin. He has written a very nice thesis on how a thermodynamic

* Sponsored by the Office of Naval Research under Contract Nonr 562(20) with Brown
University.
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treatment can be based upon any such explicit state description. He
shows, however, that while everything is clear, explicit, and self-con-
sistent, the result is physically incorrect for a metal no matter how com-
plex the assemblage of elements. Nevertheless, hope does spring eter-
nal.

As I did not know what Professor Prager was going to say, I had
planned to start by noting that Professor Perzyna, in the introduction
to his “Thermodynamics of Viscoplasticity” brought out both the prim-
itive and the controversial status of this subject. He deals with both ex-
tremes of the research spectrum. One is the very sensible pragmatic
approach of choosing the simplest of all representations which can give
a reasonable approximate solution for a given problem of practical im-
portance. If you want to solve boundary value problems, you must
idealize your constitutive relations or your thermodynamics drastically.
On the other extreme there is the effort to which he and a number of
us are devoting our time (represented in viscoelasticity by Professor
Valanis’ presentation), aimed at a rather general thermodynamic ap-
proach to the inelastic behavior of materials.

Perhaps a reduction to time-independent plastic relations can il-
lustrate best the confusion which results from a mixture of the two
extremes. Most elaborate forms used at present in a thermodynamic
treatment (they look very elaborate indeed in the large-strain general-
tensorial formulation) are really at the same level of representation as
perfect plasticity with a simple yield criterion, or they go one step be-
yond to include kinematic hardening. This, of course, as Professor
Prager emphasizes, is not in any way a real description of the physical
behavior of material. No one takes any such drastic idealization as
representing the actual response of real metals. It is simply the least
you can put down and hope to get an answer which has engineering
importance. The details of stress-strain behavior of a structural metal
are enormously more elaborate as can be and often has been demon-
strated by experiments in combined tension and shear. Once we leave
the elastic range, all hope disappears of finding both a simple and a
complete description of the mechanical behavior of metals. Obviously,
then, we cannot hope for simplicity and completeness in a thermo-
dynamic description.

When solving problems, simplicity comes first; but what should we
do when attempting to describe physical behavior in its essential detail?
One very reasonable choice is to uncouple the thermal and the me-
chanical aspects except for the influence of temperature on the prop-
erties of the material which is taken into account only approximately.
This is one approach, but it is not thermodynamics; it is the antithesis
of thermodynamics. Most speakers at this Symposium have wisely fol-
lowed this path.
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What must we do if we wish to do thermodynamics? Clearly, we must
satisfy the first and second laws and build a mathematically consistent
theory. The main point I wish to make, however, is that mathematical
consistency is not the area in which our major problem lies. A complex
mathematical development of complete generality, which satisfies the
first and second laws, may look impressive but is of little if any use.
Complete generality is chaos.

How can I be so positive in making so negative a statement? Let us go
back again to time-independent plasticity. If you use just the first and
second laws, nothing comes out that you don’t already know. Nothing
comes out which is of the essence of plasticity theory. Consequently,
you cannot expect that in a more general treatment anything will
come out which is really of the essence of a coupled thermodynamic
time- and temperature-dependent plasticity theory. When you look
at the details of the most complex or the most elementary of the mod-
ern mathematical treatments which produce definite results, you find
implicitly or explicitly an arbitrary choice of state variables or a verv
strong assumption about the state variables. Instead of illuminating the
physical nature of the assumptions about the material, an elaborate
mathematical superstructure obscures the essential step which is taken.
For example, often only plastic strain is added as a state variable to
those variables appropriate for purely elastic materials. Perhaps be-
cause there are nine new state variables in tensorial space, some read-
ers get the impression that a general thermodynamic theory is pro-
posed. First of all, of course, plastic strain is clearly not a state variable
as can easily be seen from the simple example of compressing a bar
plastically and then pulling it back to its original dimensions. In the
limiting case of isothermal time-independent plasticity theory, this is
just the kinematic hardening assumption. It is a great way of solving
particular problems with rather small plastic strains, but it is not more
than the crudest beginning of a real thermodynamic description of
metal behavior. Certainly it is not enough of a start to warrant very
learned discussions about second order and higher order effects.

Possibly because the mathematics is so opaque, assumptions are
made which are so drastic as to distort the essence of the theory. Again
let me revert to isothermal time-independent theory to describe what
can happen. Suppose we do as we once did, before we learned better,
and say that “obviously” the rate of plastic work is positive; ode;” or
g€ > 0. We then concentrate on plastic work and the second law of
thermodynamics, when in fact it is not ;€;;” > 0 but (o; — o;;")€;” = 0
which gives plasticity theory. As shown in the figure on p. 408, the
yield locus need not, and with sufficient Bauschinger effect does not,
enclose the origin. The rate of doing plastic work o€;” then can be
negative as illustrated.
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If in a thermodynamic theory, we generalize but keep the assump-
tion that plastic work is positive, clearly we settle on the wrong physical
basis even though we speak in terms of entropy production.
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These pitfalls are mentioned, not because many people have fallen
into error but to emphasize the need to concentrate on a different level
of endeavor. Somehow we must elucidate the essence of physical be-
havior first and later cast it into mathematical form. Professor Bodner
phrased it well when he said that we must look for a basic physical law
not just a mathematical convenience.

When a drastic simplification is made, it should shine out clearly in
the mathematics so everyone can see it and everyone can evaluate it.
This Professor Perzyna does when he solves problems as did Dr. Lind-
holm in the analysis of his experimental data. Dr. Hahn and his co-
authors also were clear in the exposition of their basic variables, as was
Dr. Krafft in his treatment of the plane-strain crack. In this group of
papers, only Dr. Krafft paid detailed attention to the microscale and its
effect on the macroscale. He emphasized the role of inclusions and
their spacing in determining the spread of the plastic zone and the final
separation of material.
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The difficulty with the assemblage-of-element thermodynamic ap-
proach described in the opening paragraph of this closing discussion
does not, 1 believe, lie at this microstructural level but rather at the
much finer dislocation level. Some of the aspects of dislocation be-
havior can be modeled by assemblages of elastic and perfectly plastic
elements of different degrees of complexity. However, the mechanisms
of importance in the range of 1% or more of plastic strain in a poly-
crystalline structural metal are not represented well by such models.
The basic difficulty is that the models have too great a degree of
mechanical restorability. They can by purely mechanical means be
brought back to a reference or annealed state no matter how elaborate
the prior path of loading. Their virtue is their drawback. The easy
definability of state and the fixed set of state variables is a gross over-
simplification of the behavior of real metals. An annealed metal which
is deformed plastically cannot be brought back to the annealed state by
purely mechanical working. The lack of a loading path from the de-
formed to the annealed state reflects those rearrangements on the
microscale which do in fact account for work-hardening and manyv of
the other properties of single crystals and polycrystals.

Perhaps in thermodynamic terms the mechanically irrestorable (as
distinguished from irreversible) changes on the microscale corre-
spond to continual changes in phase. This certainly is true in the sense
that the changing properties of a plastically deforming metal are not
contained within any of the classes of models or assemblages we use to
simulate metals. Are assemblages of model elements, each with a well-
defined state, inadequate because they correspond to a fixed phase? If
so, the point once more is that emphasis must be placed on the basic
physical aspects in simple mathematical terms rather than on the
simple physical idealizations in complex mathematical form. Again,
full generality is not the goal; full generality is complete chaos and
contains no information. Unifying instructive classifications of physical
behavior are required which contain the essence of the macroscopic
problem. Such ideas as using plastic work or plastic strain as a state
variable won’t do because thev are trivially oversimple. On the other ex-
treme, a continual change of phase without thermodynamic prescrip-
tion is impossibly general even if true in the strictest physical sense.
Some concept between an assemblage of well-defined states and a con-
tinual unspecified irrestorability or phase change is required.

Let me then repeat in conclusion that what I believe should be done
is to worry far less about general mathematical consistency and to con-
centrate on the physical aspects. These must be put down in clear and
reasonably acceptable form before it is worthwhile subjecting them to
formal mathematical treatment.
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Session IIL J. D. CAMPBELL,*
University of Oxford, England

It has become increasingly clear during the last two decades that the
rate dependence of the mechanical behavior of solids is a key factor in
understanding the fundamental processes involved in anelastic defor-
mation. The realization that this is true for metals as for non-metals
was delayed for two reasons: firstly, many common alloys are rela-
tively rate-insensitive at normal rates of strain, so that it is necessary to
use apparatus capable of measuring stress and strain accurately over
very wide ranges of strain rate; secondly, the fundamental processes of
plastic flow in metals could not be investigated experimentally until
adequate techniques were developed for observing dislocations and
their properties.

With the advent of electronic methods of control and measurement
of stress, strain and strain rate, and the development of techniques for
high-speed testing, the accurate determination of rate effects in metals
became possible; and some ten years ago the direct measurement of
mean dislocation velocities was achieved by the double-etch method of
Gilman and Johnston. The results of those measurements showed that,
in certain materials at least, very large increases in the mean disloca-
tion velocity correspond to quite moderate increases in the applied
stress. This explains the small rate-sensitivity of such materials. It has
been shown by electron microscopy that dislocations multiply very
rapidly as plastic straining takes place. If the dislocation density in-
creases in this way, a given strain rate may be maintained with a re-
duced mean dislocation velocity; this may even lead to a decrease in the
flow stress, so that a yield drop is observed. It is possible that, at a
given plastic strain, the density of mobile dislocations increases with the
applied stress; experimental observations on this point are not yet
available. Any such increase in the number of dislocations participating
in the deformation will reduce the dislocation velocity and thus tend to
mask the rate effect.

Experiments such as those referred to in Dr. Gillich’s paper indicate
that certain annealed pure metals are effectively rate-insensitive over
fairly wide ranges of rate. Another group of rate-insensitive materials
consists of high-strength alloys in which the plastic flow is controlled by
hard second-phase particles or other relatively large obstacles. In ma-
terials such as those of either group, the behavior may be adequately
represented by a simple rate-independent stress-strain curve, for uni-

* On leave at Brown University.
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axial stressing. For general three-dimensional stress, the laws of classi-
cal plasticity theory describe the deformation.

The rate dependence of the flow stress, even if it is small, may have
important consequences. For example, as Bodner and Rosen have
shown, if the flow stress decreases with increasing strain rate, the speci-
men may show discontinuous straining represented by a serrated
stress-strain curve. It must be noted, however, that this behavior de-
pends on the characteristics of the machine in which the deformation is
carried out, as well as on the properties of the material. This is a very
important point which concerns all types of material testing: it is in
general necessary to insure that the interaction between the material
and test apparatus is taken into account, if the basic properties of the
material are to be determined. Another example in which this inter-
action is of importance is provided by the discontinuous yielding ob-
served in mild steel and other alloys. Here the deformation becomes
highly heterogeneous and Liiders-band formation occurs. A further
example, also involving non-uniform flow, is the phenomenon of
necking in the tensile test. In such cases, the determination of the
basic material behavior becomes extremely difficult.

All these phenomena can only be properly understood by taking
account of two factors: the intrinsic rate dependence of the material
itself, and the heterogeneous nature of the deformation and of the
original state of the material. Under conditions of non-uniform flow,
initial irregularities of geometry or material state may become magni-
fied during the deformation, and it is then very hard to deduce the
basic material properties from macroscopic measurements; however,
some progress has been made in developing phenomenological
theories to describe these types of heterogeneous deformation, using
empirical laws for the material behavior.

The direct measurement of dislocation velocities was a major step
towards the goal of relating macroscopically observable quantities—
stress, strain, strain rate—to the basic deformation mechanisms in
metals. In addition to the results obtained by the double-etch method,
dislocation mobilities have been derived indirectly from measurements
of ultrasonic attenuation. These two techniques involve different
ranges of stress and strain, and in general they do not give the same
behavior. I think it is important to distinguish between the mean dis-
location velocity for motion over relatively large distances, and the
local velocity attained by dislocations moving over distances which are
small compared with the spacing of obstacles in the lattice. There has
been some success in interpreting measurements of both types, in
terms of various theoretical models for the rate-controlling processes.
Examples of these are the overcoming of point defects, phonon vis-



412 Appendix

cosity, and the motion of kinks along the dislocation line; some of these
models were discussed in Professor Gilman’s paper. It is clear that
there is a great variety of possible rate-controlling processes, and it
seems that even in a given material more than one of these may be sig-
nificant under given conditions. Thus a constitutive relationship de-
rived by considering a single rate process is likely to be valid only within
a small range of the variables concerned. I would therefore emphasize
the importance of the point made by Professor Prager: that any con-
stitutive law must include a statement of the ranges of variables for
which it is valid, if it is to be useful.

A further complication in attempting to deduce the macroscopic be-
havior from models of the basic deformation mechanisms is the hetero-
geneous nature of the deformation on the microscale even when it is
uniform on the macroscale. This is well illustrated in the results given
by Dr. Edington in his paper; these showed that even in a single crystal
of a pure metal, highly complex non-uniform distributions of disloca-
tions develop during plastic flow. In such circumstances, the concept
of mean dislocation density is of doubtful value. In alloys of practical
importance, heterogeneity on a larger scale occurs because of the poly-
crystalline nature of the material, variations in grain size and orienta-
tion, second phase particles, inclusions, residual stresses and other fac-
tors.

In view of the complexity of the deformation processes in common
alloys, therefore, it seems unlikely that it will prove possible to deduce
general constitutive laws from a knowledge of the basic flow mecha-
nisms. Thus, as remarked by Professor Gilman in his paper, it is at
present more realistic to be satisfied with phenomenological descrip-
tions. In formulating these descriptions, however, we should still be
guided as far as possible by general considerations based on dislocation
theory. We start with the basic flow relation for plastic strain due to the
motion of dislocations, which states that the shear strain rate is propor-
tional to the product of the density of mobile dislocation p, and their
mean velocity v. We then try to obtain some indication as to how each
of these two variables depends on macroscopic quantities such as the
applied stress and the plastic strain. This seems to be the most hopeful
way in which to try to formulate constitutive relationships which will
be physically reasonable, whose validity can be tested by experiments.

As I have already mentioned, the mobile dislocation density is not a
very well understood quantity. All that can be measured at present is
the total dislocation density, and results such as those given in Dr.
Edington’s paper show that it increases approximately linearly with
plastic strain. It is customary to assume that the mobile number is a
constant fraction of the total; I believe this may be an oversimplifica-
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tion, and it is to be hoped that experimental techniques will be de-
veloped to throw light on the problem of the influence of the applied
stress. The mean velocity at low dislocation densities can be measured
by the double-etch method, but this technique cannot be used at den-
sities corresponding to even moderate plastic strains: at such strains
interactions between dislocations become important and the mean ve-
locity decreases. The mobile fraction may also decrease as a conse-
quence of dislocation interaction.

[t seems that neither mobile dislocation density nor mean dislocation
velocity can at present be determined experimentally, except under
severely limiting restrictions. Various semi-empirical expressions have
been proposed for the two quantities, and it has been shown by Gilman,
Hahn and others that many of the observed phenomena of dynamic
straining can be qualitatively explained bv combining the basic flow
equations with an equation describing the elastic behavior of the spec-
imen and testing machine.

In a more general approach, we mayv assume that both p,, and v de-
pend on the applied stress and the dislocation sub-structure of the ma-
terial. Dr. Edington’s paper showed clearly that this sub-structure is a
function not only of the current plastic strain but also of the history of
straining. As a first approximation, however. we may neglect the his-
tory and simply take the plastic strain as defining the dislocation den-
sity. This approach leads to the formulation put forward by Malvern,
in which the plastic strain rate is taken to be a function of the applied
stress and the plastic strain. As is well known, this has proved to explain
some of the observed wave effects, and it has also been shown to give a
reasonable description of some of the data relating to rate-dependent
behavior at medium strain rates. A more specific form of Malvern’s
equation is based on the overstress hypothesis, in which the plastic
strain rate is taken to be a function of the amount by which the applied
stress exceeds a work-hardening stress corresponding to static condi-
tions. However, as Professor Bodner pointed out in his paper, this ap-
proach cannot be applied to materials showing rate dependence at low
rates, since no static stress-strain relation can then be defined.

In certain metals it may be possible to characterize the deformation
in terms of a single stress-dependent activation energy, over limited
ranges of temperature and strain rate. The most widely used model of
this type is Seeger’s intersection model, according to which the flow
stress for a given dislocation sub-structure is a linear function of the
logarithm of the strain rate. This model has been used very success-
tully by Dorn, Lindholm, Maiden and others, in interpreting experi-
mental data obtained for several face-centered cubic metals.

At very high stresses dislocations are able to overcome the barriers
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which oppose their motion, without the aid of thermal activation. Un-
der these conditions it appears that the flow stress increases linearly
with the strain rate, rather than with its logarithm; this corresponds to
a very large increase in the rate sensitivity. It is thought that in this
region the rate is controlled by damping forces of a viscous nature
which act on dislocations as they move through the lattice. The rates
at which this behavior occurs are at the limit of the experimentally at-
tainable range and therefore I think that data in this region are less
well established than those obtained at lower rates. Certainly more ex-
periments at very high rates would be most valuable, and I have no
doubt that improved techniques will enable the behavior in this range
to be explored further within the next few years.

Nearly all the existing data on dynamic plasticity relate to simple
states of stress or strain. The experimental difficulties of extending the
work to more general stress systems are very considerable, especially at
the highest rates, which are the ones of most interest. The experiments
at medium rates described in Dr. Lindholm’s paper are a very promis-
ing start in this direction, and clearly we may expect further interesting
studies of this nature to be undertaken in the future. Only by such
work can empirical three-dimensional constitutive laws be established
for rate-dependent materials.

Several hypotheses have been put forward as to the form these laws
might take: Dr. Perzyna has generalized Malvern’s overstress hypoth-
esis, while Dr. Cristescu has proposed an equation based on decom-
posing the strain rate into elastic, plastic and visco-plastic components.
At the present meeting, Dr. Bodner has put forward a law in which the
second invariant of the plastic deformation rate is taken to be a func-
tion of the second invariant of the deviatoric stress. This law, if modi-
fied to take work-hardening into account, would correspond to a
generalization of Malvern’s basic rate equation. These are interesting
proposals which must be tested against experimental results obtained
for materials subjected to dynamic combined stresses.

In summary, it seems that detailed studies of dislocation mecha-
nisms, while of great intrinsic interest, are not likely to provide in the
foreseeable future the information needed for the calculation of
macroscopic behavior under dynamic loading. It is therefore neces-
sary to employ semi-empirical laws, based as far as possible on existing
knowledge of the basic deformation processes. Some success has been
achieved along these lines, but consideration has so far been almost
entirely limited to simple states of stress. Much further experimenta-
tion remains to be done, especially at the highest rates and under
general stress states, in order to determine the range of validity of the
various forms of constitutive law.
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Session IV. C. D. LUNDERGAN,
Sandia Corporation, Albuquerque, New Mexico

The papers presented in the fourth session of the symposium can be
related in the context of extending and unifying the techniques used to
determine the dynamic mechanical properties of materials. These
papers are concerned with that portion of the state of the art repre-
sented by one-dimensional stress, both short and long bar, one-dimen-
sional strain and the cylindrical configuration resulting in plane strain.
The various recording techniques were well represented as mechani-
cal, optical, electrical and electro-mechanical devices were used to re-
cord the dynamic response.

Dr. Karnes observed in his presentation that to obtain dynamic
mechanical material properties for the time intervals of the order of
microseconds, it is necessary to place the specimen in a defined state of
stress from the outset of the observation and to maintain this mathe-
matically amenable condition throughout the time of observation. The
strain rates under the condition of one-dimensional strain were limited
only by the wave propagation characteristics of the material itself. He
also noted the assiduousness that must be employed in the preparation
and conduction of an experiment; the indirect method that must be
used in relating the observations to the desired properties; and the
complexity of the analysis which must follow the multitude of stress
wave interactions.

He also presented comparisons of the results of various kinds of
instrumentation such as quartz gage, the capacitor and the inter-
ferometer; all of which were favorable. Reference was made to the use
of the Gillman-Johnston dislocation model used by Taylor to relate the
attenuation of peak stress with distance. Again the results were favor-
able. The intent being to show the internal consistency of the informa-
tion obtained in this relatively new procedure for investigating dy-
namic behavior.

Dislocation dynamics was also called into play by Dr. Maiden in his
representations of the work done at General Motors. Agreement, or at
least limited explanation of some of the strain-rate observations, was
found. They observed the strain-rate sensitivity of aluminum as a func-
tion of alloying, temperature, and hardness. This was all done in the
one-dimensional stress configuration. Using this information, they pre-
dicted what might well be observed in aluminum in the one-dimen-
sional strain configuration.

Professor Fyfe recognized some years ago that a further extension
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of experimental techniques is required to provide a more stringent
test of the intrinsical nature of the dynamic properties generated by
the conditions of one-dimensional stress and one-dimensional strain
and to this end he has made considerable progress in the development
of a technique which subjects the specimen to plane strain and is still
amenable to mathematical description. The compatibility of the ob-
served behavior in the elastic regime and the mathematical model was
established and used to validate the experimental procedure and to
define initial conditions. The resolution of the descrepancies in the
plastic regime will achieve the desired end of discerning which of the
models are valid and the extent to which the material properties are
intrinsic. So again, the intent is to extend the methods of investigation
and provide a means of unifying the field of study.

Unification was also the intent in part of the paper of Professor Rip-
perger. Using a general form of the constitutive equation and by intro-
ducing large variations of the parameters involved, he obtained the
stress-strain relations for various constant strain rates. In turn he ob-
tained a wave profile in a semi-infinite bar for both the rate independ-
ent model and for several variations of the rate dependent model. He
concluded the establishment of constitutive equations from the ob-
servation of wave front shapes and strain propagation velocity under
one-dimensional stress conditions was ambiguous and the deductions
on the existence of rate sensitivity or the lack of it in materials using
this technique is questionable.

Now as to the expected course of the subject of dynamic mechanical
properties of materials—the demands of the industrial and military
complexes will insure an increase of activities for the reasons noted by
the introductory speaker. The larger part of this activity will be the
generation of the properties of engineering materials. There will, as
there is now, be some difficulties resulting from the acquisition, analy-
sis, and interpretation of the data. The source of this difficulty is the
relative newness of the study, it has not as yet reached the point in de-
velopment that tests can be conducted in a routine manner. Another
difficulty is that generalizations of several classes of materials, as for
example the polymers, have not been completed in the research labora-
tories. While the demand for properties exists now, there are not as yet
a sufficient number of engineering laboratories producing reliable dy-
namic data.

The activity in the research laboratory will correspondingly increase.
This activity will be in the form of a more intensive effort to describe
additional classes of materials, such as the polymers, the ceramics, and
the distended materials. More conditions will be explored, such as
stress relaxation, multiaxial stress configurations and the effects of
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phase transitions. The environments will be extended as well into the
fast heating rates and the larger temperature ranges.

In summary, the design needs which control the purse strings will
provide impetus to this field of study of wave propagation of materials
in the microsecond and submicrosecond regime.

Session V. D. M. FORNEY, JR.,
Wright-Patterson Air Force Base, Dayton, Ohio

When I noted mv position on the program, it occurred to me that my
prepared remarks about the presented material might be redundant
since. by then, myv predecessors would surely have adequately covered
the essence of the important points. I decided, therefore, to confine my
remarks, and make them brief. to the problems confronting us in the
application of fundamental results of the type discussed in this confer-
ence to practical engineering situations.

As already pointed out, we have a long way to go in the development
of comprehensive analytical techniques to solve engineering problems
of materials dynamics based on solid theoretical grounds. This is not
particularly surprising when one considers that such techniques for
complex static cases, as well as low-frequency dynamic cases involving
negligible strain rate effects (e.g., vibrations), are still only marginally
adequate themselves. This, on the face of it, could be a very discour-
aging point of view; however, in light of the progress that has been
made in the understanding of fundamental aspects of materials be-
havior, even in the last ten years, one then has reason to be very hope-
ful. We must realize, nevertheless, that theoretically justified tech-
niques for accurately defining the high strain rate dynamic behavior of
materials are largelv nonexistent and the interim methods of analysis
are indeed meager.

One of the most critical problems we face today in engineering appli-
cations work related to the subject of our conference is the lack of a
fully descriptive theory of wave propagation in non-homogeneous or
multiphase materials. Without such a theory, it is not possible to pre-
dict the response of such a composite system to impulsive loading, even
under the most ideal conditions, nor to theoretically design a candidate
system for test. This fact is understandable, though, when we realize
that there is even notable disagreement today in what constitutes the
logical approach to the formulation of the problem of one ideal solid
dispersed as a phase in a second one, and so on. One-, two- and three-
dimensionally reinforced composites are being utilized today in many
roles involving high rate loading and improvements in the theoretical
bases for the configurations of these systems are critical requirements.
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Another problem area of real consequence is the lack of descriptive
dynamic fracture criteria for composite materials. The problem ap-
pears especially critical when we realize that knowledge of fracture
mechanisms in homogeneous materials under dynamic conditions is
still largely undeveloped, while fracture behavior under static condi-
tions is still to be fully resolved.

In the absence of well-developed analyses of both dynamic response
and fracture properties, it is necessary to rely on approximations from
which it is possible to draw only few generalizations. For example, a
fictitious equation of state must be assumed for a composite material
based on a theory for homogeneous solids, and a threshold fracture
resistance can be defined only in terms of a set of standard test condi-
tions and not in terms of definitive stress and strain fields. Still one step
further is the important need for an understanding of dynamic be-
havior at elevated temperatures.

An additional serious complicating factor in the understanding of dy-
namic materials behavior is the difficulty of experimentation, not only
to measure quantities that are required for use in constitutive relations
describing materials response as well as to validate new theories, but
also to compare the dynamic response characteristics of components
with those predicted in design. It appears that, even though impressive
advances in experimental skill have occurred, we have a long way to go
in this field; we have seen during the course of this conference that
there is a significant disagreement among many experimenters on
techniques. It will be an important task to develop experimental tech-
niques which introduce more realistic environments; not just simply
more realistic environments one at a time, but rather in their proper
combination. It is a well-known fact that environmental effects are not
simply additive, but are synergistic in nature. Examples of environ-
mental conditions under which dynamic response measurements are
presently needed for current engineering applications are: up to very
high temperatures, high heat fluxes, high pressures, corrosive condi-
tions, and others. Examples of engineering applications of current in-
terest and importance are: the design of protective systems such as
armor and sacrificial shock absorbing systems; re-entry bodies such as
nose cones and space capsules; design of structures to withstand earth-
quake and other ground-transmitted shocks, sonic boom overpres-
sures, air blast loads, underwater detonations; design of oil well drill
rigs; the application of explosive forming manufacturing techniques;
and many others.

A problem common to all fields of science and engineering, and cer-
tainly in substantial evidence in the dynamic materials behavior area,
is the very large separation in thinking, point of view and orientation
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between the fundamentalists in materials science and the design engi-
neers who apply engineering data and analytical tools to practical engi-
neering situations. Because of the many restraints of time, simplicity
and practicality of a design procedure on the one hand, and the num-
ber of analytical complexities and idealizations attributable to funda-
mental analyses on the other, much of the scientific knowledge de-
veloped over the years in very careful research and in very funda-
mental work is lost to the engineering community. Obviously, the more
advanced our technology becomes, the more imperative it is to reduce,
or hopefully eliminate this separation. Unfortunately, there is no sufh-
ciently organized class of research engineers properly oriented to
specifically reconcile the differences and convert fundamental research
results into a form and language suitable for adoption in the usual de-
sign situation. I think each of us, whether we be materials fundamental-
ists or materials-design engineers, needs to improve on our efforts to
reconcile this gap.
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